| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iundifdif.o | 
							 |-  O e. _V  | 
						
						
							| 2 | 
							
								
							 | 
							iundifdif.2 | 
							 |-  A C_ ~P O  | 
						
						
							| 3 | 
							
								
							 | 
							iundif2 | 
							 |-  U_ x e. A ( O \ x ) = ( O \ |^|_ x e. A x )  | 
						
						
							| 4 | 
							
								
							 | 
							intiin | 
							 |-  |^| A = |^|_ x e. A x  | 
						
						
							| 5 | 
							
								4
							 | 
							difeq2i | 
							 |-  ( O \ |^| A ) = ( O \ |^|_ x e. A x )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							eqtr4i | 
							 |-  U_ x e. A ( O \ x ) = ( O \ |^| A )  | 
						
						
							| 7 | 
							
								6
							 | 
							difeq2i | 
							 |-  ( O \ U_ x e. A ( O \ x ) ) = ( O \ ( O \ |^| A ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							jctl | 
							 |-  ( A =/= (/) -> ( A C_ ~P O /\ A =/= (/) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							intssuni2 | 
							 |-  ( ( A C_ ~P O /\ A =/= (/) ) -> |^| A C_ U. ~P O )  | 
						
						
							| 10 | 
							
								
							 | 
							unipw | 
							 |-  U. ~P O = O  | 
						
						
							| 11 | 
							
								10
							 | 
							sseq2i | 
							 |-  ( |^| A C_ U. ~P O <-> |^| A C_ O )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpi | 
							 |-  ( |^| A C_ U. ~P O -> |^| A C_ O )  | 
						
						
							| 13 | 
							
								8 9 12
							 | 
							3syl | 
							 |-  ( A =/= (/) -> |^| A C_ O )  | 
						
						
							| 14 | 
							
								
							 | 
							dfss4 | 
							 |-  ( |^| A C_ O <-> ( O \ ( O \ |^| A ) ) = |^| A )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylib | 
							 |-  ( A =/= (/) -> ( O \ ( O \ |^| A ) ) = |^| A )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							eqtr2id | 
							 |-  ( A =/= (/) -> |^| A = ( O \ U_ x e. A ( O \ x ) ) )  |