Step |
Hyp |
Ref |
Expression |
1 |
|
iundif2 |
|- U_ x e. A ( O \ x ) = ( O \ |^|_ x e. A x ) |
2 |
|
intiin |
|- |^| A = |^|_ x e. A x |
3 |
2
|
difeq2i |
|- ( O \ |^| A ) = ( O \ |^|_ x e. A x ) |
4 |
1 3
|
eqtr4i |
|- U_ x e. A ( O \ x ) = ( O \ |^| A ) |
5 |
4
|
difeq2i |
|- ( O \ U_ x e. A ( O \ x ) ) = ( O \ ( O \ |^| A ) ) |
6 |
|
intssuni2 |
|- ( ( A C_ ~P O /\ A =/= (/) ) -> |^| A C_ U. ~P O ) |
7 |
|
unipw |
|- U. ~P O = O |
8 |
6 7
|
sseqtrdi |
|- ( ( A C_ ~P O /\ A =/= (/) ) -> |^| A C_ O ) |
9 |
|
dfss4 |
|- ( |^| A C_ O <-> ( O \ ( O \ |^| A ) ) = |^| A ) |
10 |
8 9
|
sylib |
|- ( ( A C_ ~P O /\ A =/= (/) ) -> ( O \ ( O \ |^| A ) ) = |^| A ) |
11 |
5 10
|
eqtr2id |
|- ( ( A C_ ~P O /\ A =/= (/) ) -> |^| A = ( O \ U_ x e. A ( O \ x ) ) ) |
12 |
11
|
ex |
|- ( A C_ ~P O -> ( A =/= (/) -> |^| A = ( O \ U_ x e. A ( O \ x ) ) ) ) |