Step |
Hyp |
Ref |
Expression |
1 |
|
iunfo.1 |
|- T = U_ x e. A ( { x } X. B ) |
2 |
|
iundomg.2 |
|- ( ph -> U_ x e. A ( C ^m B ) e. AC_ A ) |
3 |
|
iundomg.3 |
|- ( ph -> A. x e. A B ~<_ C ) |
4 |
|
brdomi |
|- ( B ~<_ C -> E. g g : B -1-1-> C ) |
5 |
4
|
adantl |
|- ( ( x e. A /\ B ~<_ C ) -> E. g g : B -1-1-> C ) |
6 |
|
f1f |
|- ( g : B -1-1-> C -> g : B --> C ) |
7 |
|
reldom |
|- Rel ~<_ |
8 |
7
|
brrelex2i |
|- ( B ~<_ C -> C e. _V ) |
9 |
7
|
brrelex1i |
|- ( B ~<_ C -> B e. _V ) |
10 |
8 9
|
elmapd |
|- ( B ~<_ C -> ( g e. ( C ^m B ) <-> g : B --> C ) ) |
11 |
10
|
adantl |
|- ( ( x e. A /\ B ~<_ C ) -> ( g e. ( C ^m B ) <-> g : B --> C ) ) |
12 |
6 11
|
syl5ibr |
|- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> g e. ( C ^m B ) ) ) |
13 |
|
ssiun2 |
|- ( x e. A -> ( C ^m B ) C_ U_ x e. A ( C ^m B ) ) |
14 |
13
|
adantr |
|- ( ( x e. A /\ B ~<_ C ) -> ( C ^m B ) C_ U_ x e. A ( C ^m B ) ) |
15 |
14
|
sseld |
|- ( ( x e. A /\ B ~<_ C ) -> ( g e. ( C ^m B ) -> g e. U_ x e. A ( C ^m B ) ) ) |
16 |
12 15
|
syld |
|- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> g e. U_ x e. A ( C ^m B ) ) ) |
17 |
16
|
ancrd |
|- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) ) |
18 |
17
|
eximdv |
|- ( ( x e. A /\ B ~<_ C ) -> ( E. g g : B -1-1-> C -> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) ) |
19 |
5 18
|
mpd |
|- ( ( x e. A /\ B ~<_ C ) -> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) |
20 |
|
df-rex |
|- ( E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) |
21 |
19 20
|
sylibr |
|- ( ( x e. A /\ B ~<_ C ) -> E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
22 |
21
|
ralimiaa |
|- ( A. x e. A B ~<_ C -> A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
23 |
3 22
|
syl |
|- ( ph -> A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
24 |
|
nfv |
|- F/ y E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C |
25 |
|
nfiu1 |
|- F/_ x U_ x e. A ( C ^m B ) |
26 |
|
nfcv |
|- F/_ x g |
27 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
28 |
|
nfcv |
|- F/_ x C |
29 |
26 27 28
|
nff1 |
|- F/ x g : [_ y / x ]_ B -1-1-> C |
30 |
25 29
|
nfrex |
|- F/ x E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C |
31 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
32 |
|
f1eq2 |
|- ( B = [_ y / x ]_ B -> ( g : B -1-1-> C <-> g : [_ y / x ]_ B -1-1-> C ) ) |
33 |
31 32
|
syl |
|- ( x = y -> ( g : B -1-1-> C <-> g : [_ y / x ]_ B -1-1-> C ) ) |
34 |
33
|
rexbidv |
|- ( x = y -> ( E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) ) |
35 |
24 30 34
|
cbvralw |
|- ( A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) |
36 |
23 35
|
sylib |
|- ( ph -> A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) |
37 |
|
f1eq1 |
|- ( g = ( f ` y ) -> ( g : [_ y / x ]_ B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
38 |
37
|
acni3 |
|- ( ( U_ x e. A ( C ^m B ) e. AC_ A /\ A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) -> E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
39 |
2 36 38
|
syl2anc |
|- ( ph -> E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
40 |
|
nfv |
|- F/ y ( f ` x ) : B -1-1-> C |
41 |
|
nfcv |
|- F/_ x ( f ` y ) |
42 |
41 27 28
|
nff1 |
|- F/ x ( f ` y ) : [_ y / x ]_ B -1-1-> C |
43 |
|
fveq2 |
|- ( x = y -> ( f ` x ) = ( f ` y ) ) |
44 |
|
f1eq1 |
|- ( ( f ` x ) = ( f ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : B -1-1-> C ) ) |
45 |
43 44
|
syl |
|- ( x = y -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : B -1-1-> C ) ) |
46 |
|
f1eq2 |
|- ( B = [_ y / x ]_ B -> ( ( f ` y ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
47 |
31 46
|
syl |
|- ( x = y -> ( ( f ` y ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
48 |
45 47
|
bitrd |
|- ( x = y -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
49 |
40 42 48
|
cbvralw |
|- ( A. x e. A ( f ` x ) : B -1-1-> C <-> A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) |
50 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
51 |
|
acnrcl |
|- ( U_ x e. A ( C ^m B ) e. AC_ A -> A e. _V ) |
52 |
2 51
|
syl |
|- ( ph -> A e. _V ) |
53 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. x e. A B ~<_ C ) -> E. x e. A B ~<_ C ) |
54 |
8
|
rexlimivw |
|- ( E. x e. A B ~<_ C -> C e. _V ) |
55 |
53 54
|
syl |
|- ( ( A =/= (/) /\ A. x e. A B ~<_ C ) -> C e. _V ) |
56 |
55
|
expcom |
|- ( A. x e. A B ~<_ C -> ( A =/= (/) -> C e. _V ) ) |
57 |
3 56
|
syl |
|- ( ph -> ( A =/= (/) -> C e. _V ) ) |
58 |
|
xpexg |
|- ( ( A e. _V /\ C e. _V ) -> ( A X. C ) e. _V ) |
59 |
52 57 58
|
syl6an |
|- ( ph -> ( A =/= (/) -> ( A X. C ) e. _V ) ) |
60 |
50 59
|
syl5bir |
|- ( ph -> ( -. A = (/) -> ( A X. C ) e. _V ) ) |
61 |
|
xpeq1 |
|- ( A = (/) -> ( A X. C ) = ( (/) X. C ) ) |
62 |
|
0xp |
|- ( (/) X. C ) = (/) |
63 |
|
0ex |
|- (/) e. _V |
64 |
62 63
|
eqeltri |
|- ( (/) X. C ) e. _V |
65 |
61 64
|
eqeltrdi |
|- ( A = (/) -> ( A X. C ) e. _V ) |
66 |
60 65
|
pm2.61d2 |
|- ( ph -> ( A X. C ) e. _V ) |
67 |
1
|
eleq2i |
|- ( y e. T <-> y e. U_ x e. A ( { x } X. B ) ) |
68 |
|
eliun |
|- ( y e. U_ x e. A ( { x } X. B ) <-> E. x e. A y e. ( { x } X. B ) ) |
69 |
67 68
|
bitri |
|- ( y e. T <-> E. x e. A y e. ( { x } X. B ) ) |
70 |
|
r19.29 |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) |
71 |
|
xp1st |
|- ( y e. ( { x } X. B ) -> ( 1st ` y ) e. { x } ) |
72 |
71
|
ad2antll |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) e. { x } ) |
73 |
|
elsni |
|- ( ( 1st ` y ) e. { x } -> ( 1st ` y ) = x ) |
74 |
72 73
|
syl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) = x ) |
75 |
|
simpl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> x e. A ) |
76 |
74 75
|
eqeltrd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) e. A ) |
77 |
74
|
fveq2d |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( f ` ( 1st ` y ) ) = ( f ` x ) ) |
78 |
77
|
fveq1d |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` x ) ` ( 2nd ` y ) ) ) |
79 |
|
f1f |
|- ( ( f ` x ) : B -1-1-> C -> ( f ` x ) : B --> C ) |
80 |
79
|
ad2antrl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( f ` x ) : B --> C ) |
81 |
|
xp2nd |
|- ( y e. ( { x } X. B ) -> ( 2nd ` y ) e. B ) |
82 |
81
|
ad2antll |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 2nd ` y ) e. B ) |
83 |
80 82
|
ffvelrnd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` x ) ` ( 2nd ` y ) ) e. C ) |
84 |
78 83
|
eqeltrd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) e. C ) |
85 |
76 84
|
opelxpd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
86 |
85
|
rexlimiva |
|- ( E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
87 |
70 86
|
syl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
88 |
87
|
ex |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( E. x e. A y e. ( { x } X. B ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) ) |
89 |
69 88
|
syl5bi |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( y e. T -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) ) |
90 |
|
fvex |
|- ( 1st ` y ) e. _V |
91 |
|
fvex |
|- ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) e. _V |
92 |
90 91
|
opth |
|- ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) |
93 |
|
simpr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 1st ` y ) = ( 1st ` z ) ) |
94 |
93
|
fveq2d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( f ` ( 1st ` y ) ) = ( f ` ( 1st ` z ) ) ) |
95 |
94
|
fveq1d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
96 |
95
|
eqeq2d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) |
97 |
|
djussxp |
|- U_ x e. A ( { x } X. B ) C_ ( A X. _V ) |
98 |
1 97
|
eqsstri |
|- T C_ ( A X. _V ) |
99 |
|
simprl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> y e. T ) |
100 |
98 99
|
sselid |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> y e. ( A X. _V ) ) |
101 |
100
|
adantr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> y e. ( A X. _V ) ) |
102 |
|
xp1st |
|- ( y e. ( A X. _V ) -> ( 1st ` y ) e. A ) |
103 |
101 102
|
syl |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 1st ` y ) e. A ) |
104 |
|
simpll |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> A. x e. A ( f ` x ) : B -1-1-> C ) |
105 |
|
nfcv |
|- F/_ x ( f ` ( 1st ` y ) ) |
106 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` y ) / x ]_ B |
107 |
105 106 28
|
nff1 |
|- F/ x ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C |
108 |
|
fveq2 |
|- ( x = ( 1st ` y ) -> ( f ` x ) = ( f ` ( 1st ` y ) ) ) |
109 |
|
f1eq1 |
|- ( ( f ` x ) = ( f ` ( 1st ` y ) ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : B -1-1-> C ) ) |
110 |
108 109
|
syl |
|- ( x = ( 1st ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : B -1-1-> C ) ) |
111 |
|
csbeq1a |
|- ( x = ( 1st ` y ) -> B = [_ ( 1st ` y ) / x ]_ B ) |
112 |
|
f1eq2 |
|- ( B = [_ ( 1st ` y ) / x ]_ B -> ( ( f ` ( 1st ` y ) ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
113 |
111 112
|
syl |
|- ( x = ( 1st ` y ) -> ( ( f ` ( 1st ` y ) ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
114 |
110 113
|
bitrd |
|- ( x = ( 1st ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
115 |
107 114
|
rspc |
|- ( ( 1st ` y ) e. A -> ( A. x e. A ( f ` x ) : B -1-1-> C -> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
116 |
103 104 115
|
sylc |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) |
117 |
106
|
nfel2 |
|- F/ x ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B |
118 |
74
|
eqcomd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> x = ( 1st ` y ) ) |
119 |
118 111
|
syl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> B = [_ ( 1st ` y ) / x ]_ B ) |
120 |
82 119
|
eleqtrd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
121 |
120
|
ex |
|- ( x e. A -> ( ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
122 |
117 121
|
rexlimi |
|- ( E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
123 |
70 122
|
syl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
124 |
123
|
ex |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( E. x e. A y e. ( { x } X. B ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
125 |
69 124
|
syl5bi |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( y e. T -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
126 |
125
|
imp |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ y e. T ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
127 |
126
|
adantrr |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
128 |
127
|
adantr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
129 |
125
|
ralrimiv |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> A. y e. T ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
130 |
|
fveq2 |
|- ( y = z -> ( 2nd ` y ) = ( 2nd ` z ) ) |
131 |
|
fveq2 |
|- ( y = z -> ( 1st ` y ) = ( 1st ` z ) ) |
132 |
131
|
csbeq1d |
|- ( y = z -> [_ ( 1st ` y ) / x ]_ B = [_ ( 1st ` z ) / x ]_ B ) |
133 |
130 132
|
eleq12d |
|- ( y = z -> ( ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B <-> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) ) |
134 |
133
|
rspccva |
|- ( ( A. y e. T ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B /\ z e. T ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
135 |
129 134
|
sylan |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ z e. T ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
136 |
135
|
adantrl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
137 |
136
|
adantr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
138 |
93
|
csbeq1d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> [_ ( 1st ` y ) / x ]_ B = [_ ( 1st ` z ) / x ]_ B ) |
139 |
137 138
|
eleqtrrd |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` z ) e. [_ ( 1st ` y ) / x ]_ B ) |
140 |
|
f1fveq |
|- ( ( ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C /\ ( ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B /\ ( 2nd ` z ) e. [_ ( 1st ` y ) / x ]_ B ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
141 |
116 128 139 140
|
syl12anc |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
142 |
96 141
|
bitr3d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
143 |
142
|
pm5.32da |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) <-> ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) ) ) |
144 |
|
simprr |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> z e. T ) |
145 |
98 144
|
sselid |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> z e. ( A X. _V ) ) |
146 |
|
xpopth |
|- ( ( y e. ( A X. _V ) /\ z e. ( A X. _V ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) <-> y = z ) ) |
147 |
100 145 146
|
syl2anc |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) <-> y = z ) ) |
148 |
143 147
|
bitrd |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) <-> y = z ) ) |
149 |
92 148
|
syl5bb |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> y = z ) ) |
150 |
149
|
ex |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( ( y e. T /\ z e. T ) -> ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> y = z ) ) ) |
151 |
89 150
|
dom2d |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( ( A X. C ) e. _V -> T ~<_ ( A X. C ) ) ) |
152 |
66 151
|
syl5com |
|- ( ph -> ( A. x e. A ( f ` x ) : B -1-1-> C -> T ~<_ ( A X. C ) ) ) |
153 |
49 152
|
syl5bir |
|- ( ph -> ( A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C -> T ~<_ ( A X. C ) ) ) |
154 |
153
|
adantld |
|- ( ph -> ( ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) -> T ~<_ ( A X. C ) ) ) |
155 |
154
|
exlimdv |
|- ( ph -> ( E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) -> T ~<_ ( A X. C ) ) ) |
156 |
39 155
|
mpd |
|- ( ph -> T ~<_ ( A X. C ) ) |