| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunfo.1 |
|- T = U_ x e. A ( { x } X. B ) |
| 2 |
|
iundomg.2 |
|- ( ph -> U_ x e. A ( C ^m B ) e. AC_ A ) |
| 3 |
|
iundomg.3 |
|- ( ph -> A. x e. A B ~<_ C ) |
| 4 |
|
brdomi |
|- ( B ~<_ C -> E. g g : B -1-1-> C ) |
| 5 |
4
|
adantl |
|- ( ( x e. A /\ B ~<_ C ) -> E. g g : B -1-1-> C ) |
| 6 |
|
f1f |
|- ( g : B -1-1-> C -> g : B --> C ) |
| 7 |
|
reldom |
|- Rel ~<_ |
| 8 |
7
|
brrelex2i |
|- ( B ~<_ C -> C e. _V ) |
| 9 |
7
|
brrelex1i |
|- ( B ~<_ C -> B e. _V ) |
| 10 |
8 9
|
elmapd |
|- ( B ~<_ C -> ( g e. ( C ^m B ) <-> g : B --> C ) ) |
| 11 |
10
|
adantl |
|- ( ( x e. A /\ B ~<_ C ) -> ( g e. ( C ^m B ) <-> g : B --> C ) ) |
| 12 |
6 11
|
imbitrrid |
|- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> g e. ( C ^m B ) ) ) |
| 13 |
|
ssiun2 |
|- ( x e. A -> ( C ^m B ) C_ U_ x e. A ( C ^m B ) ) |
| 14 |
13
|
adantr |
|- ( ( x e. A /\ B ~<_ C ) -> ( C ^m B ) C_ U_ x e. A ( C ^m B ) ) |
| 15 |
14
|
sseld |
|- ( ( x e. A /\ B ~<_ C ) -> ( g e. ( C ^m B ) -> g e. U_ x e. A ( C ^m B ) ) ) |
| 16 |
12 15
|
syld |
|- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> g e. U_ x e. A ( C ^m B ) ) ) |
| 17 |
16
|
ancrd |
|- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) ) |
| 18 |
17
|
eximdv |
|- ( ( x e. A /\ B ~<_ C ) -> ( E. g g : B -1-1-> C -> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) ) |
| 19 |
5 18
|
mpd |
|- ( ( x e. A /\ B ~<_ C ) -> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) |
| 20 |
|
df-rex |
|- ( E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) |
| 21 |
19 20
|
sylibr |
|- ( ( x e. A /\ B ~<_ C ) -> E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
| 22 |
21
|
ralimiaa |
|- ( A. x e. A B ~<_ C -> A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
| 23 |
3 22
|
syl |
|- ( ph -> A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
| 24 |
|
nfv |
|- F/ y E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C |
| 25 |
|
nfiu1 |
|- F/_ x U_ x e. A ( C ^m B ) |
| 26 |
|
nfcv |
|- F/_ x g |
| 27 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
| 28 |
|
nfcv |
|- F/_ x C |
| 29 |
26 27 28
|
nff1 |
|- F/ x g : [_ y / x ]_ B -1-1-> C |
| 30 |
25 29
|
nfrexw |
|- F/ x E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C |
| 31 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 32 |
|
f1eq2 |
|- ( B = [_ y / x ]_ B -> ( g : B -1-1-> C <-> g : [_ y / x ]_ B -1-1-> C ) ) |
| 33 |
31 32
|
syl |
|- ( x = y -> ( g : B -1-1-> C <-> g : [_ y / x ]_ B -1-1-> C ) ) |
| 34 |
33
|
rexbidv |
|- ( x = y -> ( E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) ) |
| 35 |
24 30 34
|
cbvralw |
|- ( A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) |
| 36 |
23 35
|
sylib |
|- ( ph -> A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) |
| 37 |
|
f1eq1 |
|- ( g = ( f ` y ) -> ( g : [_ y / x ]_ B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 38 |
37
|
acni3 |
|- ( ( U_ x e. A ( C ^m B ) e. AC_ A /\ A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) -> E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 39 |
2 36 38
|
syl2anc |
|- ( ph -> E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 40 |
|
nfv |
|- F/ y ( f ` x ) : B -1-1-> C |
| 41 |
|
nfcv |
|- F/_ x ( f ` y ) |
| 42 |
41 27 28
|
nff1 |
|- F/ x ( f ` y ) : [_ y / x ]_ B -1-1-> C |
| 43 |
|
fveq2 |
|- ( x = y -> ( f ` x ) = ( f ` y ) ) |
| 44 |
|
f1eq1 |
|- ( ( f ` x ) = ( f ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : B -1-1-> C ) ) |
| 45 |
43 44
|
syl |
|- ( x = y -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : B -1-1-> C ) ) |
| 46 |
|
f1eq2 |
|- ( B = [_ y / x ]_ B -> ( ( f ` y ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 47 |
31 46
|
syl |
|- ( x = y -> ( ( f ` y ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 48 |
45 47
|
bitrd |
|- ( x = y -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 49 |
40 42 48
|
cbvralw |
|- ( A. x e. A ( f ` x ) : B -1-1-> C <-> A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) |
| 50 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
| 51 |
|
acnrcl |
|- ( U_ x e. A ( C ^m B ) e. AC_ A -> A e. _V ) |
| 52 |
2 51
|
syl |
|- ( ph -> A e. _V ) |
| 53 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. x e. A B ~<_ C ) -> E. x e. A B ~<_ C ) |
| 54 |
8
|
rexlimivw |
|- ( E. x e. A B ~<_ C -> C e. _V ) |
| 55 |
53 54
|
syl |
|- ( ( A =/= (/) /\ A. x e. A B ~<_ C ) -> C e. _V ) |
| 56 |
55
|
expcom |
|- ( A. x e. A B ~<_ C -> ( A =/= (/) -> C e. _V ) ) |
| 57 |
3 56
|
syl |
|- ( ph -> ( A =/= (/) -> C e. _V ) ) |
| 58 |
|
xpexg |
|- ( ( A e. _V /\ C e. _V ) -> ( A X. C ) e. _V ) |
| 59 |
52 57 58
|
syl6an |
|- ( ph -> ( A =/= (/) -> ( A X. C ) e. _V ) ) |
| 60 |
50 59
|
biimtrrid |
|- ( ph -> ( -. A = (/) -> ( A X. C ) e. _V ) ) |
| 61 |
|
xpeq1 |
|- ( A = (/) -> ( A X. C ) = ( (/) X. C ) ) |
| 62 |
|
0xp |
|- ( (/) X. C ) = (/) |
| 63 |
|
0ex |
|- (/) e. _V |
| 64 |
62 63
|
eqeltri |
|- ( (/) X. C ) e. _V |
| 65 |
61 64
|
eqeltrdi |
|- ( A = (/) -> ( A X. C ) e. _V ) |
| 66 |
60 65
|
pm2.61d2 |
|- ( ph -> ( A X. C ) e. _V ) |
| 67 |
1
|
eleq2i |
|- ( y e. T <-> y e. U_ x e. A ( { x } X. B ) ) |
| 68 |
|
eliun |
|- ( y e. U_ x e. A ( { x } X. B ) <-> E. x e. A y e. ( { x } X. B ) ) |
| 69 |
67 68
|
bitri |
|- ( y e. T <-> E. x e. A y e. ( { x } X. B ) ) |
| 70 |
|
r19.29 |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) |
| 71 |
|
xp1st |
|- ( y e. ( { x } X. B ) -> ( 1st ` y ) e. { x } ) |
| 72 |
71
|
ad2antll |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) e. { x } ) |
| 73 |
|
elsni |
|- ( ( 1st ` y ) e. { x } -> ( 1st ` y ) = x ) |
| 74 |
72 73
|
syl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) = x ) |
| 75 |
|
simpl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> x e. A ) |
| 76 |
74 75
|
eqeltrd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) e. A ) |
| 77 |
74
|
fveq2d |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( f ` ( 1st ` y ) ) = ( f ` x ) ) |
| 78 |
77
|
fveq1d |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` x ) ` ( 2nd ` y ) ) ) |
| 79 |
|
f1f |
|- ( ( f ` x ) : B -1-1-> C -> ( f ` x ) : B --> C ) |
| 80 |
79
|
ad2antrl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( f ` x ) : B --> C ) |
| 81 |
|
xp2nd |
|- ( y e. ( { x } X. B ) -> ( 2nd ` y ) e. B ) |
| 82 |
81
|
ad2antll |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 2nd ` y ) e. B ) |
| 83 |
80 82
|
ffvelcdmd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` x ) ` ( 2nd ` y ) ) e. C ) |
| 84 |
78 83
|
eqeltrd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) e. C ) |
| 85 |
76 84
|
opelxpd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
| 86 |
85
|
rexlimiva |
|- ( E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
| 87 |
70 86
|
syl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
| 88 |
87
|
ex |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( E. x e. A y e. ( { x } X. B ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) ) |
| 89 |
69 88
|
biimtrid |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( y e. T -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) ) |
| 90 |
|
fvex |
|- ( 1st ` y ) e. _V |
| 91 |
|
fvex |
|- ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) e. _V |
| 92 |
90 91
|
opth |
|- ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) |
| 93 |
|
simpr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 1st ` y ) = ( 1st ` z ) ) |
| 94 |
93
|
fveq2d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( f ` ( 1st ` y ) ) = ( f ` ( 1st ` z ) ) ) |
| 95 |
94
|
fveq1d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
| 96 |
95
|
eqeq2d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) |
| 97 |
|
djussxp |
|- U_ x e. A ( { x } X. B ) C_ ( A X. _V ) |
| 98 |
1 97
|
eqsstri |
|- T C_ ( A X. _V ) |
| 99 |
|
simprl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> y e. T ) |
| 100 |
98 99
|
sselid |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> y e. ( A X. _V ) ) |
| 101 |
100
|
adantr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> y e. ( A X. _V ) ) |
| 102 |
|
xp1st |
|- ( y e. ( A X. _V ) -> ( 1st ` y ) e. A ) |
| 103 |
101 102
|
syl |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 1st ` y ) e. A ) |
| 104 |
|
simpll |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> A. x e. A ( f ` x ) : B -1-1-> C ) |
| 105 |
|
nfcv |
|- F/_ x ( f ` ( 1st ` y ) ) |
| 106 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` y ) / x ]_ B |
| 107 |
105 106 28
|
nff1 |
|- F/ x ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C |
| 108 |
|
fveq2 |
|- ( x = ( 1st ` y ) -> ( f ` x ) = ( f ` ( 1st ` y ) ) ) |
| 109 |
|
f1eq1 |
|- ( ( f ` x ) = ( f ` ( 1st ` y ) ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : B -1-1-> C ) ) |
| 110 |
108 109
|
syl |
|- ( x = ( 1st ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : B -1-1-> C ) ) |
| 111 |
|
csbeq1a |
|- ( x = ( 1st ` y ) -> B = [_ ( 1st ` y ) / x ]_ B ) |
| 112 |
|
f1eq2 |
|- ( B = [_ ( 1st ` y ) / x ]_ B -> ( ( f ` ( 1st ` y ) ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 113 |
111 112
|
syl |
|- ( x = ( 1st ` y ) -> ( ( f ` ( 1st ` y ) ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 114 |
110 113
|
bitrd |
|- ( x = ( 1st ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 115 |
107 114
|
rspc |
|- ( ( 1st ` y ) e. A -> ( A. x e. A ( f ` x ) : B -1-1-> C -> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 116 |
103 104 115
|
sylc |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) |
| 117 |
106
|
nfel2 |
|- F/ x ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B |
| 118 |
74
|
eqcomd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> x = ( 1st ` y ) ) |
| 119 |
118 111
|
syl |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> B = [_ ( 1st ` y ) / x ]_ B ) |
| 120 |
82 119
|
eleqtrd |
|- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 121 |
120
|
ex |
|- ( x e. A -> ( ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
| 122 |
117 121
|
rexlimi |
|- ( E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 123 |
70 122
|
syl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 124 |
123
|
ex |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( E. x e. A y e. ( { x } X. B ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
| 125 |
69 124
|
biimtrid |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( y e. T -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
| 126 |
125
|
imp |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ y e. T ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 127 |
126
|
adantrr |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 128 |
127
|
adantr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 129 |
125
|
ralrimiv |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> A. y e. T ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 130 |
|
fveq2 |
|- ( y = z -> ( 2nd ` y ) = ( 2nd ` z ) ) |
| 131 |
|
fveq2 |
|- ( y = z -> ( 1st ` y ) = ( 1st ` z ) ) |
| 132 |
131
|
csbeq1d |
|- ( y = z -> [_ ( 1st ` y ) / x ]_ B = [_ ( 1st ` z ) / x ]_ B ) |
| 133 |
130 132
|
eleq12d |
|- ( y = z -> ( ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B <-> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) ) |
| 134 |
133
|
rspccva |
|- ( ( A. y e. T ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B /\ z e. T ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 135 |
129 134
|
sylan |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ z e. T ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 136 |
135
|
adantrl |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 137 |
136
|
adantr |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 138 |
93
|
csbeq1d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> [_ ( 1st ` y ) / x ]_ B = [_ ( 1st ` z ) / x ]_ B ) |
| 139 |
137 138
|
eleqtrrd |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` z ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 140 |
|
f1fveq |
|- ( ( ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C /\ ( ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B /\ ( 2nd ` z ) e. [_ ( 1st ` y ) / x ]_ B ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
| 141 |
116 128 139 140
|
syl12anc |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
| 142 |
96 141
|
bitr3d |
|- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
| 143 |
142
|
pm5.32da |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) <-> ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) ) ) |
| 144 |
|
simprr |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> z e. T ) |
| 145 |
98 144
|
sselid |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> z e. ( A X. _V ) ) |
| 146 |
|
xpopth |
|- ( ( y e. ( A X. _V ) /\ z e. ( A X. _V ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) <-> y = z ) ) |
| 147 |
100 145 146
|
syl2anc |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) <-> y = z ) ) |
| 148 |
143 147
|
bitrd |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) <-> y = z ) ) |
| 149 |
92 148
|
bitrid |
|- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> y = z ) ) |
| 150 |
149
|
ex |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( ( y e. T /\ z e. T ) -> ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> y = z ) ) ) |
| 151 |
89 150
|
dom2d |
|- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( ( A X. C ) e. _V -> T ~<_ ( A X. C ) ) ) |
| 152 |
66 151
|
syl5com |
|- ( ph -> ( A. x e. A ( f ` x ) : B -1-1-> C -> T ~<_ ( A X. C ) ) ) |
| 153 |
49 152
|
biimtrrid |
|- ( ph -> ( A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C -> T ~<_ ( A X. C ) ) ) |
| 154 |
153
|
adantld |
|- ( ph -> ( ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) -> T ~<_ ( A X. C ) ) ) |
| 155 |
154
|
exlimdv |
|- ( ph -> ( E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) -> T ~<_ ( A X. C ) ) ) |
| 156 |
39 155
|
mpd |
|- ( ph -> T ~<_ ( A X. C ) ) |