| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunfo.1 |
|- T = U_ x e. A ( { x } X. B ) |
| 2 |
|
iundomg.2 |
|- ( ph -> U_ x e. A ( C ^m B ) e. AC_ A ) |
| 3 |
|
iundomg.3 |
|- ( ph -> A. x e. A B ~<_ C ) |
| 4 |
|
iundomg.4 |
|- ( ph -> ( A X. C ) e. AC_ U_ x e. A B ) |
| 5 |
1 2 3
|
iundom2g |
|- ( ph -> T ~<_ ( A X. C ) ) |
| 6 |
|
acndom2 |
|- ( T ~<_ ( A X. C ) -> ( ( A X. C ) e. AC_ U_ x e. A B -> T e. AC_ U_ x e. A B ) ) |
| 7 |
5 4 6
|
sylc |
|- ( ph -> T e. AC_ U_ x e. A B ) |
| 8 |
1
|
iunfo |
|- ( 2nd |` T ) : T -onto-> U_ x e. A B |
| 9 |
|
fodomacn |
|- ( T e. AC_ U_ x e. A B -> ( ( 2nd |` T ) : T -onto-> U_ x e. A B -> U_ x e. A B ~<_ T ) ) |
| 10 |
7 8 9
|
mpisyl |
|- ( ph -> U_ x e. A B ~<_ T ) |
| 11 |
|
domtr |
|- ( ( U_ x e. A B ~<_ T /\ T ~<_ ( A X. C ) ) -> U_ x e. A B ~<_ ( A X. C ) ) |
| 12 |
10 5 11
|
syl2anc |
|- ( ph -> U_ x e. A B ~<_ ( A X. C ) ) |