Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | iuneq1 | |- ( A = B -> U_ x e. A C = U_ x e. B C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 | |- ( A C_ B -> U_ x e. A C C_ U_ x e. B C ) |
|
2 | iunss1 | |- ( B C_ A -> U_ x e. B C C_ U_ x e. A C ) |
|
3 | 1 2 | anim12i | |- ( ( A C_ B /\ B C_ A ) -> ( U_ x e. A C C_ U_ x e. B C /\ U_ x e. B C C_ U_ x e. A C ) ) |
4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
5 | eqss | |- ( U_ x e. A C = U_ x e. B C <-> ( U_ x e. A C C_ U_ x e. B C /\ U_ x e. B C C_ U_ x e. A C ) ) |
|
6 | 3 4 5 | 3imtr4i | |- ( A = B -> U_ x e. A C = U_ x e. B C ) |