Step |
Hyp |
Ref |
Expression |
1 |
|
iuneq12d.1 |
|- ( ph -> A = B ) |
2 |
|
iuneq12d.2 |
|- ( ph -> C = D ) |
3 |
1
|
eleq2d |
|- ( ph -> ( x e. A <-> x e. B ) ) |
4 |
3
|
anbi1d |
|- ( ph -> ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) ) ) |
5 |
4
|
rexbidv2 |
|- ( ph -> ( E. x e. A t e. C <-> E. x e. B t e. C ) ) |
6 |
5
|
abbidv |
|- ( ph -> { t | E. x e. A t e. C } = { t | E. x e. B t e. C } ) |
7 |
|
df-iun |
|- U_ x e. A C = { t | E. x e. A t e. C } |
8 |
|
df-iun |
|- U_ x e. B C = { t | E. x e. B t e. C } |
9 |
6 7 8
|
3eqtr4g |
|- ( ph -> U_ x e. A C = U_ x e. B C ) |
10 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> C = D ) |
11 |
10
|
iuneq2dv |
|- ( ph -> U_ x e. B C = U_ x e. B D ) |
12 |
9 11
|
eqtrd |
|- ( ph -> U_ x e. A C = U_ x e. B D ) |