Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iuneq1d.1 | |- ( ph -> A = B ) |
|
iuneq12d.2 | |- ( ph -> C = D ) |
||
Assertion | iuneq12d | |- ( ph -> U_ x e. A C = U_ x e. B D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | |- ( ph -> A = B ) |
|
2 | iuneq12d.2 | |- ( ph -> C = D ) |
|
3 | 1 | iuneq1d | |- ( ph -> U_ x e. A C = U_ x e. B C ) |
4 | 2 | adantr | |- ( ( ph /\ x e. B ) -> C = D ) |
5 | 4 | iuneq2dv | |- ( ph -> U_ x e. B C = U_ x e. B D ) |
6 | 3 5 | eqtrd | |- ( ph -> U_ x e. A C = U_ x e. B D ) |