Metamath Proof Explorer


Theorem iuneq1d

Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015)

Ref Expression
Hypothesis iuneq1d.1
|- ( ph -> A = B )
Assertion iuneq1d
|- ( ph -> U_ x e. A C = U_ x e. B C )

Proof

Step Hyp Ref Expression
1 iuneq1d.1
 |-  ( ph -> A = B )
2 iuneq1
 |-  ( A = B -> U_ x e. A C = U_ x e. B C )
3 1 2 syl
 |-  ( ph -> U_ x e. A C = U_ x e. B C )