Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iuneq1i.1 | |- A = B  | 
					|
| Assertion | iuneq1i | |- U_ x e. A C = U_ x e. B C  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iuneq1i.1 | |- A = B  | 
						|
| 2 | 1 | eleq2i | |- ( x e. A <-> x e. B )  | 
						
| 3 | 2 | anbi1i | |- ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) )  | 
						
| 4 | 3 | rexbii2 | |- ( E. x e. A t e. C <-> E. x e. B t e. C )  | 
						
| 5 | 4 | abbii |  |-  { t | E. x e. A t e. C } = { t | E. x e. B t e. C } | 
						
| 6 | df-iun |  |-  U_ x e. A C = { t | E. x e. A t e. C } | 
						|
| 7 | df-iun |  |-  U_ x e. B C = { t | E. x e. B t e. C } | 
						|
| 8 | 5 6 7 | 3eqtr4i | |- U_ x e. A C = U_ x e. B C  |