Metamath Proof Explorer


Theorem iuneq1i

Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis iuneq1i.1
|- A = B
Assertion iuneq1i
|- U_ x e. A C = U_ x e. B C

Proof

Step Hyp Ref Expression
1 iuneq1i.1
 |-  A = B
2 iuneq1
 |-  ( A = B -> U_ x e. A C = U_ x e. B C )
3 1 2 ax-mp
 |-  U_ x e. A C = U_ x e. B C