Metamath Proof Explorer


Theorem iunin1

Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use uniiun to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion iunin1
|- U_ x e. A ( C i^i B ) = ( U_ x e. A C i^i B )

Proof

Step Hyp Ref Expression
1 iunin2
 |-  U_ x e. A ( B i^i C ) = ( B i^i U_ x e. A C )
2 incom
 |-  ( C i^i B ) = ( B i^i C )
3 2 a1i
 |-  ( x e. A -> ( C i^i B ) = ( B i^i C ) )
4 3 iuneq2i
 |-  U_ x e. A ( C i^i B ) = U_ x e. A ( B i^i C )
5 incom
 |-  ( U_ x e. A C i^i B ) = ( B i^i U_ x e. A C )
6 1 4 5 3eqtr4i
 |-  U_ x e. A ( C i^i B ) = ( U_ x e. A C i^i B )