Metamath Proof Explorer


Theorem iunmapdisj

Description: The union U_ n e. C ( A ^m n ) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion iunmapdisj
|- E* n e. C B e. ( A ^m n )

Proof

Step Hyp Ref Expression
1 moeq
 |-  E* n n = dom B
2 elmapi
 |-  ( B e. ( A ^m n ) -> B : n --> A )
3 fdm
 |-  ( B : n --> A -> dom B = n )
4 3 eqcomd
 |-  ( B : n --> A -> n = dom B )
5 2 4 syl
 |-  ( B e. ( A ^m n ) -> n = dom B )
6 5 moimi
 |-  ( E* n n = dom B -> E* n B e. ( A ^m n ) )
7 1 6 ax-mp
 |-  E* n B e. ( A ^m n )
8 7 moani
 |-  E* n ( n e. C /\ B e. ( A ^m n ) )
9 df-rmo
 |-  ( E* n e. C B e. ( A ^m n ) <-> E* n ( n e. C /\ B e. ( A ^m n ) ) )
10 8 9 mpbir
 |-  E* n e. C B e. ( A ^m n )