Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iunss1 | |- ( A C_ B -> U_ x e. A C C_ U_ x e. B C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv | |- ( A C_ B -> ( E. x e. A y e. C -> E. x e. B y e. C ) ) |
|
2 | eliun | |- ( y e. U_ x e. A C <-> E. x e. A y e. C ) |
|
3 | eliun | |- ( y e. U_ x e. B C <-> E. x e. B y e. C ) |
|
4 | 1 2 3 | 3imtr4g | |- ( A C_ B -> ( y e. U_ x e. A C -> y e. U_ x e. B C ) ) |
5 | 4 | ssrdv | |- ( A C_ B -> U_ x e. A C C_ U_ x e. B C ) |