Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunssd.1 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
| Assertion | iunssd | |- ( ph -> U_ x e. A B C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunssd.1 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
| 2 | 1 | ralrimiva | |- ( ph -> A. x e. A B C_ C ) |
| 3 | iunss | |- ( U_ x e. A B C_ C <-> A. x e. A B C_ C ) |
|
| 4 | 2 3 | sylibr | |- ( ph -> U_ x e. A B C_ C ) |