Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iunssd.1 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
Assertion | iunssd | |- ( ph -> U_ x e. A B C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunssd.1 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A B C_ C ) |
3 | iunss | |- ( U_ x e. A B C_ C <-> A. x e. A B C_ C ) |
|
4 | 2 3 | sylibr | |- ( ph -> U_ x e. A B C_ C ) |