Metamath Proof Explorer


Theorem iunssd

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis iunssd.1
|- ( ( ph /\ x e. A ) -> B C_ C )
Assertion iunssd
|- ( ph -> U_ x e. A B C_ C )

Proof

Step Hyp Ref Expression
1 iunssd.1
 |-  ( ( ph /\ x e. A ) -> B C_ C )
2 1 ralrimiva
 |-  ( ph -> A. x e. A B C_ C )
3 iunss
 |-  ( U_ x e. A B C_ C <-> A. x e. A B C_ C )
4 2 3 sylibr
 |-  ( ph -> U_ x e. A B C_ C )