Metamath Proof Explorer


Theorem iunsuc

Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypotheses iunsuc.1
|- A e. _V
iunsuc.2
|- ( x = A -> B = C )
Assertion iunsuc
|- U_ x e. suc A B = ( U_ x e. A B u. C )

Proof

Step Hyp Ref Expression
1 iunsuc.1
 |-  A e. _V
2 iunsuc.2
 |-  ( x = A -> B = C )
3 df-suc
 |-  suc A = ( A u. { A } )
4 iuneq1
 |-  ( suc A = ( A u. { A } ) -> U_ x e. suc A B = U_ x e. ( A u. { A } ) B )
5 3 4 ax-mp
 |-  U_ x e. suc A B = U_ x e. ( A u. { A } ) B
6 iunxun
 |-  U_ x e. ( A u. { A } ) B = ( U_ x e. A B u. U_ x e. { A } B )
7 1 2 iunxsn
 |-  U_ x e. { A } B = C
8 7 uneq2i
 |-  ( U_ x e. A B u. U_ x e. { A } B ) = ( U_ x e. A B u. C )
9 5 6 8 3eqtri
 |-  U_ x e. suc A B = ( U_ x e. A B u. C )