Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunsuc.1 | |- A e. _V |
|
| iunsuc.2 | |- ( x = A -> B = C ) |
||
| Assertion | iunsuc | |- U_ x e. suc A B = ( U_ x e. A B u. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunsuc.1 | |- A e. _V |
|
| 2 | iunsuc.2 | |- ( x = A -> B = C ) |
|
| 3 | df-suc | |- suc A = ( A u. { A } ) |
|
| 4 | iuneq1 | |- ( suc A = ( A u. { A } ) -> U_ x e. suc A B = U_ x e. ( A u. { A } ) B ) |
|
| 5 | 3 4 | ax-mp | |- U_ x e. suc A B = U_ x e. ( A u. { A } ) B |
| 6 | iunxun | |- U_ x e. ( A u. { A } ) B = ( U_ x e. A B u. U_ x e. { A } B ) |
|
| 7 | 1 2 | iunxsn | |- U_ x e. { A } B = C |
| 8 | 7 | uneq2i | |- ( U_ x e. A B u. U_ x e. { A } B ) = ( U_ x e. A B u. C ) |
| 9 | 5 6 8 | 3eqtri | |- U_ x e. suc A B = ( U_ x e. A B u. C ) |