Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( B =/= (/) <-> -. B = (/) ) |
2 |
|
iunconst |
|- ( B =/= (/) -> U_ x e. B A = A ) |
3 |
1 2
|
sylbir |
|- ( -. B = (/) -> U_ x e. B A = A ) |
4 |
|
iun0 |
|- U_ x e. B (/) = (/) |
5 |
|
id |
|- ( A = (/) -> A = (/) ) |
6 |
5
|
iuneq2d |
|- ( A = (/) -> U_ x e. B A = U_ x e. B (/) ) |
7 |
4 6 5
|
3eqtr4a |
|- ( A = (/) -> U_ x e. B A = A ) |
8 |
3 7
|
ja |
|- ( ( B = (/) -> A = (/) ) -> U_ x e. B A = A ) |
9 |
8
|
eqcomd |
|- ( ( B = (/) -> A = (/) ) -> A = U_ x e. B A ) |
10 |
9
|
uneq1d |
|- ( ( B = (/) -> A = (/) ) -> ( A u. U_ x e. B x ) = ( U_ x e. B A u. U_ x e. B x ) ) |
11 |
|
uniiun |
|- U. B = U_ x e. B x |
12 |
11
|
uneq2i |
|- ( A u. U. B ) = ( A u. U_ x e. B x ) |
13 |
|
iunun |
|- U_ x e. B ( A u. x ) = ( U_ x e. B A u. U_ x e. B x ) |
14 |
10 12 13
|
3eqtr4g |
|- ( ( B = (/) -> A = (/) ) -> ( A u. U. B ) = U_ x e. B ( A u. x ) ) |
15 |
|
unieq |
|- ( B = (/) -> U. B = U. (/) ) |
16 |
|
uni0 |
|- U. (/) = (/) |
17 |
15 16
|
eqtrdi |
|- ( B = (/) -> U. B = (/) ) |
18 |
17
|
uneq2d |
|- ( B = (/) -> ( A u. U. B ) = ( A u. (/) ) ) |
19 |
|
un0 |
|- ( A u. (/) ) = A |
20 |
18 19
|
eqtrdi |
|- ( B = (/) -> ( A u. U. B ) = A ) |
21 |
|
iuneq1 |
|- ( B = (/) -> U_ x e. B ( A u. x ) = U_ x e. (/) ( A u. x ) ) |
22 |
|
0iun |
|- U_ x e. (/) ( A u. x ) = (/) |
23 |
21 22
|
eqtrdi |
|- ( B = (/) -> U_ x e. B ( A u. x ) = (/) ) |
24 |
20 23
|
eqeq12d |
|- ( B = (/) -> ( ( A u. U. B ) = U_ x e. B ( A u. x ) <-> A = (/) ) ) |
25 |
24
|
biimpcd |
|- ( ( A u. U. B ) = U_ x e. B ( A u. x ) -> ( B = (/) -> A = (/) ) ) |
26 |
14 25
|
impbii |
|- ( ( B = (/) -> A = (/) ) <-> ( A u. U. B ) = U_ x e. B ( A u. x ) ) |