Metamath Proof Explorer


Theorem iunxsnf

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iunxsnf.1
|- F/_ x C
iunxsnf.2
|- A e. _V
iunxsnf.3
|- ( x = A -> B = C )
Assertion iunxsnf
|- U_ x e. { A } B = C

Proof

Step Hyp Ref Expression
1 iunxsnf.1
 |-  F/_ x C
2 iunxsnf.2
 |-  A e. _V
3 iunxsnf.3
 |-  ( x = A -> B = C )
4 1 3 iunxsngf
 |-  ( A e. _V -> U_ x e. { A } B = C )
5 2 4 ax-mp
 |-  U_ x e. { A } B = C