Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
|- ( ph -> A e. RR ) |
2 |
|
ivth.2 |
|- ( ph -> B e. RR ) |
3 |
|
ivth.3 |
|- ( ph -> U e. RR ) |
4 |
|
ivth.4 |
|- ( ph -> A < B ) |
5 |
|
ivth.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
6 |
|
ivth.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
7 |
|
ivth.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
8 |
|
ivth.9 |
|- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
9 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
10 |
9
|
breq1d |
|- ( y = x -> ( ( F ` y ) <_ U <-> ( F ` x ) <_ U ) ) |
11 |
10
|
cbvrabv |
|- { y e. ( A [,] B ) | ( F ` y ) <_ U } = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
12 |
|
eqid |
|- sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) = sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) |
13 |
1 2 3 4 5 6 7 8 11 12
|
ivthlem3 |
|- ( ph -> ( sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) e. ( A (,) B ) /\ ( F ` sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) ) = U ) ) |
14 |
|
fveqeq2 |
|- ( c = sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) -> ( ( F ` c ) = U <-> ( F ` sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) ) = U ) ) |
15 |
14
|
rspcev |
|- ( ( sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) e. ( A (,) B ) /\ ( F ` sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) ) = U ) -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
16 |
13 15
|
syl |
|- ( ph -> E. c e. ( A (,) B ) ( F ` c ) = U ) |