Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
|- ( ph -> A e. RR ) |
2 |
|
ivth.2 |
|- ( ph -> B e. RR ) |
3 |
|
ivth.3 |
|- ( ph -> U e. RR ) |
4 |
|
ivth.4 |
|- ( ph -> A < B ) |
5 |
|
ivth.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
6 |
|
ivth.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
7 |
|
ivth.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
8 |
|
ivth2.9 |
|- ( ph -> ( ( F ` B ) < U /\ U < ( F ` A ) ) ) |
9 |
3
|
renegcld |
|- ( ph -> -u U e. RR ) |
10 |
|
eqid |
|- ( y e. D |-> -u ( F ` y ) ) = ( y e. D |-> -u ( F ` y ) ) |
11 |
10
|
negfcncf |
|- ( F e. ( D -cn-> CC ) -> ( y e. D |-> -u ( F ` y ) ) e. ( D -cn-> CC ) ) |
12 |
6 11
|
syl |
|- ( ph -> ( y e. D |-> -u ( F ` y ) ) e. ( D -cn-> CC ) ) |
13 |
5
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. D ) |
14 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
15 |
14
|
negeqd |
|- ( y = x -> -u ( F ` y ) = -u ( F ` x ) ) |
16 |
|
negex |
|- -u ( F ` x ) e. _V |
17 |
15 10 16
|
fvmpt |
|- ( x e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` x ) = -u ( F ` x ) ) |
18 |
13 17
|
syl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( y e. D |-> -u ( F ` y ) ) ` x ) = -u ( F ` x ) ) |
19 |
7
|
renegcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> -u ( F ` x ) e. RR ) |
20 |
18 19
|
eqeltrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( y e. D |-> -u ( F ` y ) ) ` x ) e. RR ) |
21 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
22 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
23 |
1 2 4
|
ltled |
|- ( ph -> A <_ B ) |
24 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
25 |
21 22 23 24
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
26 |
5 25
|
sseldd |
|- ( ph -> A e. D ) |
27 |
|
fveq2 |
|- ( y = A -> ( F ` y ) = ( F ` A ) ) |
28 |
27
|
negeqd |
|- ( y = A -> -u ( F ` y ) = -u ( F ` A ) ) |
29 |
|
negex |
|- -u ( F ` A ) e. _V |
30 |
28 10 29
|
fvmpt |
|- ( A e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) |
31 |
26 30
|
syl |
|- ( ph -> ( ( y e. D |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) |
32 |
8
|
simprd |
|- ( ph -> U < ( F ` A ) ) |
33 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
34 |
33
|
eleq1d |
|- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
35 |
7
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
36 |
34 35 25
|
rspcdva |
|- ( ph -> ( F ` A ) e. RR ) |
37 |
3 36
|
ltnegd |
|- ( ph -> ( U < ( F ` A ) <-> -u ( F ` A ) < -u U ) ) |
38 |
32 37
|
mpbid |
|- ( ph -> -u ( F ` A ) < -u U ) |
39 |
31 38
|
eqbrtrd |
|- ( ph -> ( ( y e. D |-> -u ( F ` y ) ) ` A ) < -u U ) |
40 |
8
|
simpld |
|- ( ph -> ( F ` B ) < U ) |
41 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
42 |
41
|
eleq1d |
|- ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) |
43 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
44 |
21 22 23 43
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
45 |
42 35 44
|
rspcdva |
|- ( ph -> ( F ` B ) e. RR ) |
46 |
45 3
|
ltnegd |
|- ( ph -> ( ( F ` B ) < U <-> -u U < -u ( F ` B ) ) ) |
47 |
40 46
|
mpbid |
|- ( ph -> -u U < -u ( F ` B ) ) |
48 |
5 44
|
sseldd |
|- ( ph -> B e. D ) |
49 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
50 |
49
|
negeqd |
|- ( y = B -> -u ( F ` y ) = -u ( F ` B ) ) |
51 |
|
negex |
|- -u ( F ` B ) e. _V |
52 |
50 10 51
|
fvmpt |
|- ( B e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) |
53 |
48 52
|
syl |
|- ( ph -> ( ( y e. D |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) |
54 |
47 53
|
breqtrrd |
|- ( ph -> -u U < ( ( y e. D |-> -u ( F ` y ) ) ` B ) ) |
55 |
39 54
|
jca |
|- ( ph -> ( ( ( y e. D |-> -u ( F ` y ) ) ` A ) < -u U /\ -u U < ( ( y e. D |-> -u ( F ` y ) ) ` B ) ) ) |
56 |
1 2 9 4 5 12 20 55
|
ivth |
|- ( ph -> E. c e. ( A (,) B ) ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U ) |
57 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
58 |
57 5
|
sstrid |
|- ( ph -> ( A (,) B ) C_ D ) |
59 |
58
|
sselda |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. D ) |
60 |
|
fveq2 |
|- ( y = c -> ( F ` y ) = ( F ` c ) ) |
61 |
60
|
negeqd |
|- ( y = c -> -u ( F ` y ) = -u ( F ` c ) ) |
62 |
|
negex |
|- -u ( F ` c ) e. _V |
63 |
61 10 62
|
fvmpt |
|- ( c e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u ( F ` c ) ) |
64 |
59 63
|
syl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u ( F ` c ) ) |
65 |
64
|
eqeq1d |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U <-> -u ( F ` c ) = -u U ) ) |
66 |
|
cncff |
|- ( F e. ( D -cn-> CC ) -> F : D --> CC ) |
67 |
6 66
|
syl |
|- ( ph -> F : D --> CC ) |
68 |
67
|
ffvelrnda |
|- ( ( ph /\ c e. D ) -> ( F ` c ) e. CC ) |
69 |
59 68
|
syldan |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( F ` c ) e. CC ) |
70 |
3
|
recnd |
|- ( ph -> U e. CC ) |
71 |
70
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> U e. CC ) |
72 |
69 71
|
neg11ad |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( -u ( F ` c ) = -u U <-> ( F ` c ) = U ) ) |
73 |
65 72
|
bitrd |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U <-> ( F ` c ) = U ) ) |
74 |
73
|
rexbidva |
|- ( ph -> ( E. c e. ( A (,) B ) ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U <-> E. c e. ( A (,) B ) ( F ` c ) = U ) ) |
75 |
56 74
|
mpbid |
|- ( ph -> E. c e. ( A (,) B ) ( F ` c ) = U ) |