| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivth.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
ivth.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
ivth.3 |
|- ( ph -> U e. RR ) |
| 4 |
|
ivth.4 |
|- ( ph -> A < B ) |
| 5 |
|
ivth.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
| 6 |
|
ivth.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
| 7 |
|
ivth.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
| 8 |
|
ivthle.9 |
|- ( ph -> ( ( F ` A ) <_ U /\ U <_ ( F ` B ) ) ) |
| 9 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> A e. RR ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> B e. RR ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> U e. RR ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> A < B ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> ( A [,] B ) C_ D ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> F e. ( D -cn-> CC ) ) |
| 16 |
7
|
adantlr |
|- ( ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
| 17 |
|
simpr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
| 18 |
10 11 12 13 14 15 16 17
|
ivth |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
| 19 |
|
ssrexv |
|- ( ( A (,) B ) C_ ( A [,] B ) -> ( E. c e. ( A (,) B ) ( F ` c ) = U -> E. c e. ( A [,] B ) ( F ` c ) = U ) ) |
| 20 |
9 18 19
|
mpsyl |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 21 |
20
|
anassrs |
|- ( ( ( ph /\ ( F ` A ) < U ) /\ U < ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 22 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 23 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 24 |
1 2 4
|
ltled |
|- ( ph -> A <_ B ) |
| 25 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 26 |
22 23 24 25
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 27 |
|
eqcom |
|- ( ( F ` c ) = U <-> U = ( F ` c ) ) |
| 28 |
|
fveq2 |
|- ( c = B -> ( F ` c ) = ( F ` B ) ) |
| 29 |
28
|
eqeq2d |
|- ( c = B -> ( U = ( F ` c ) <-> U = ( F ` B ) ) ) |
| 30 |
27 29
|
bitrid |
|- ( c = B -> ( ( F ` c ) = U <-> U = ( F ` B ) ) ) |
| 31 |
30
|
rspcev |
|- ( ( B e. ( A [,] B ) /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 32 |
26 31
|
sylan |
|- ( ( ph /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 33 |
32
|
adantlr |
|- ( ( ( ph /\ ( F ` A ) < U ) /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 34 |
8
|
simprd |
|- ( ph -> U <_ ( F ` B ) ) |
| 35 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 36 |
35
|
eleq1d |
|- ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) |
| 37 |
7
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 38 |
36 37 26
|
rspcdva |
|- ( ph -> ( F ` B ) e. RR ) |
| 39 |
3 38
|
leloed |
|- ( ph -> ( U <_ ( F ` B ) <-> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) ) |
| 40 |
34 39
|
mpbid |
|- ( ph -> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( F ` A ) < U ) -> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) |
| 42 |
21 33 41
|
mpjaodan |
|- ( ( ph /\ ( F ` A ) < U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 43 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 44 |
22 23 24 43
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 45 |
|
fveqeq2 |
|- ( c = A -> ( ( F ` c ) = U <-> ( F ` A ) = U ) ) |
| 46 |
45
|
rspcev |
|- ( ( A e. ( A [,] B ) /\ ( F ` A ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 47 |
44 46
|
sylan |
|- ( ( ph /\ ( F ` A ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
| 48 |
8
|
simpld |
|- ( ph -> ( F ` A ) <_ U ) |
| 49 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 50 |
49
|
eleq1d |
|- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
| 51 |
50 37 44
|
rspcdva |
|- ( ph -> ( F ` A ) e. RR ) |
| 52 |
51 3
|
leloed |
|- ( ph -> ( ( F ` A ) <_ U <-> ( ( F ` A ) < U \/ ( F ` A ) = U ) ) ) |
| 53 |
48 52
|
mpbid |
|- ( ph -> ( ( F ` A ) < U \/ ( F ` A ) = U ) ) |
| 54 |
42 47 53
|
mpjaodan |
|- ( ph -> E. c e. ( A [,] B ) ( F ` c ) = U ) |