Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
|- ( ph -> A e. RR ) |
2 |
|
ivth.2 |
|- ( ph -> B e. RR ) |
3 |
|
ivth.3 |
|- ( ph -> U e. RR ) |
4 |
|
ivth.4 |
|- ( ph -> A < B ) |
5 |
|
ivth.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
6 |
|
ivth.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
7 |
|
ivth.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
8 |
|
ivthle.9 |
|- ( ph -> ( ( F ` A ) <_ U /\ U <_ ( F ` B ) ) ) |
9 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
10 |
1
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> A e. RR ) |
11 |
2
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> B e. RR ) |
12 |
3
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> U e. RR ) |
13 |
4
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> A < B ) |
14 |
5
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> ( A [,] B ) C_ D ) |
15 |
6
|
adantr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> F e. ( D -cn-> CC ) ) |
16 |
7
|
adantlr |
|- ( ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
17 |
|
simpr |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
18 |
10 11 12 13 14 15 16 17
|
ivth |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
19 |
|
ssrexv |
|- ( ( A (,) B ) C_ ( A [,] B ) -> ( E. c e. ( A (,) B ) ( F ` c ) = U -> E. c e. ( A [,] B ) ( F ` c ) = U ) ) |
20 |
9 18 19
|
mpsyl |
|- ( ( ph /\ ( ( F ` A ) < U /\ U < ( F ` B ) ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
21 |
20
|
anassrs |
|- ( ( ( ph /\ ( F ` A ) < U ) /\ U < ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
22 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
23 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
24 |
1 2 4
|
ltled |
|- ( ph -> A <_ B ) |
25 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
26 |
22 23 24 25
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
27 |
|
eqcom |
|- ( ( F ` c ) = U <-> U = ( F ` c ) ) |
28 |
|
fveq2 |
|- ( c = B -> ( F ` c ) = ( F ` B ) ) |
29 |
28
|
eqeq2d |
|- ( c = B -> ( U = ( F ` c ) <-> U = ( F ` B ) ) ) |
30 |
27 29
|
syl5bb |
|- ( c = B -> ( ( F ` c ) = U <-> U = ( F ` B ) ) ) |
31 |
30
|
rspcev |
|- ( ( B e. ( A [,] B ) /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
32 |
26 31
|
sylan |
|- ( ( ph /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
33 |
32
|
adantlr |
|- ( ( ( ph /\ ( F ` A ) < U ) /\ U = ( F ` B ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
34 |
8
|
simprd |
|- ( ph -> U <_ ( F ` B ) ) |
35 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
36 |
35
|
eleq1d |
|- ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) |
37 |
7
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
38 |
36 37 26
|
rspcdva |
|- ( ph -> ( F ` B ) e. RR ) |
39 |
3 38
|
leloed |
|- ( ph -> ( U <_ ( F ` B ) <-> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) ) |
40 |
34 39
|
mpbid |
|- ( ph -> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( F ` A ) < U ) -> ( U < ( F ` B ) \/ U = ( F ` B ) ) ) |
42 |
21 33 41
|
mpjaodan |
|- ( ( ph /\ ( F ` A ) < U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
43 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
44 |
22 23 24 43
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
45 |
|
fveqeq2 |
|- ( c = A -> ( ( F ` c ) = U <-> ( F ` A ) = U ) ) |
46 |
45
|
rspcev |
|- ( ( A e. ( A [,] B ) /\ ( F ` A ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
47 |
44 46
|
sylan |
|- ( ( ph /\ ( F ` A ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) |
48 |
8
|
simpld |
|- ( ph -> ( F ` A ) <_ U ) |
49 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
50 |
49
|
eleq1d |
|- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
51 |
50 37 44
|
rspcdva |
|- ( ph -> ( F ` A ) e. RR ) |
52 |
51 3
|
leloed |
|- ( ph -> ( ( F ` A ) <_ U <-> ( ( F ` A ) < U \/ ( F ` A ) = U ) ) ) |
53 |
48 52
|
mpbid |
|- ( ph -> ( ( F ` A ) < U \/ ( F ` A ) = U ) ) |
54 |
42 47 53
|
mpjaodan |
|- ( ph -> E. c e. ( A [,] B ) ( F ` c ) = U ) |