| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ivth.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ivth.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ivth.3 |  |-  ( ph -> U e. RR ) | 
						
							| 4 |  | ivth.4 |  |-  ( ph -> A < B ) | 
						
							| 5 |  | ivth.5 |  |-  ( ph -> ( A [,] B ) C_ D ) | 
						
							| 6 |  | ivth.7 |  |-  ( ph -> F e. ( D -cn-> CC ) ) | 
						
							| 7 |  | ivth.8 |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) | 
						
							| 8 |  | ivthle2.9 |  |-  ( ph -> ( ( F ` B ) <_ U /\ U <_ ( F ` A ) ) ) | 
						
							| 9 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> A e. RR ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> B e. RR ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> U e. RR ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> A < B ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> ( A [,] B ) C_ D ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> F e. ( D -cn-> CC ) ) | 
						
							| 16 | 7 | adantlr |  |-  ( ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> ( ( F ` B ) < U /\ U < ( F ` A ) ) ) | 
						
							| 18 | 10 11 12 13 14 15 16 17 | ivth2 |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> E. c e. ( A (,) B ) ( F ` c ) = U ) | 
						
							| 19 |  | ssrexv |  |-  ( ( A (,) B ) C_ ( A [,] B ) -> ( E. c e. ( A (,) B ) ( F ` c ) = U -> E. c e. ( A [,] B ) ( F ` c ) = U ) ) | 
						
							| 20 | 9 18 19 | mpsyl |  |-  ( ( ph /\ ( ( F ` B ) < U /\ U < ( F ` A ) ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 21 | 20 | anassrs |  |-  ( ( ( ph /\ ( F ` B ) < U ) /\ U < ( F ` A ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 22 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 23 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 24 | 1 2 4 | ltled |  |-  ( ph -> A <_ B ) | 
						
							| 25 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc |  |-  ( ph -> A e. ( A [,] B ) ) | 
						
							| 27 |  | eqcom |  |-  ( ( F ` c ) = U <-> U = ( F ` c ) ) | 
						
							| 28 |  | fveq2 |  |-  ( c = A -> ( F ` c ) = ( F ` A ) ) | 
						
							| 29 | 28 | eqeq2d |  |-  ( c = A -> ( U = ( F ` c ) <-> U = ( F ` A ) ) ) | 
						
							| 30 | 27 29 | bitrid |  |-  ( c = A -> ( ( F ` c ) = U <-> U = ( F ` A ) ) ) | 
						
							| 31 | 30 | rspcev |  |-  ( ( A e. ( A [,] B ) /\ U = ( F ` A ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 32 | 26 31 | sylan |  |-  ( ( ph /\ U = ( F ` A ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( ph /\ ( F ` B ) < U ) /\ U = ( F ` A ) ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 34 | 8 | simprd |  |-  ( ph -> U <_ ( F ` A ) ) | 
						
							| 35 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 36 | 35 | eleq1d |  |-  ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) | 
						
							| 37 | 7 | ralrimiva |  |-  ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) | 
						
							| 38 | 36 37 26 | rspcdva |  |-  ( ph -> ( F ` A ) e. RR ) | 
						
							| 39 | 3 38 | leloed |  |-  ( ph -> ( U <_ ( F ` A ) <-> ( U < ( F ` A ) \/ U = ( F ` A ) ) ) ) | 
						
							| 40 | 34 39 | mpbid |  |-  ( ph -> ( U < ( F ` A ) \/ U = ( F ` A ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ ( F ` B ) < U ) -> ( U < ( F ` A ) \/ U = ( F ` A ) ) ) | 
						
							| 42 | 21 33 41 | mpjaodan |  |-  ( ( ph /\ ( F ` B ) < U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 43 |  | ubicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) | 
						
							| 44 | 22 23 24 43 | syl3anc |  |-  ( ph -> B e. ( A [,] B ) ) | 
						
							| 45 |  | fveqeq2 |  |-  ( c = B -> ( ( F ` c ) = U <-> ( F ` B ) = U ) ) | 
						
							| 46 | 45 | rspcev |  |-  ( ( B e. ( A [,] B ) /\ ( F ` B ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 47 | 44 46 | sylan |  |-  ( ( ph /\ ( F ` B ) = U ) -> E. c e. ( A [,] B ) ( F ` c ) = U ) | 
						
							| 48 | 8 | simpld |  |-  ( ph -> ( F ` B ) <_ U ) | 
						
							| 49 |  | fveq2 |  |-  ( x = B -> ( F ` x ) = ( F ` B ) ) | 
						
							| 50 | 49 | eleq1d |  |-  ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) | 
						
							| 51 | 50 37 44 | rspcdva |  |-  ( ph -> ( F ` B ) e. RR ) | 
						
							| 52 | 51 3 | leloed |  |-  ( ph -> ( ( F ` B ) <_ U <-> ( ( F ` B ) < U \/ ( F ` B ) = U ) ) ) | 
						
							| 53 | 48 52 | mpbid |  |-  ( ph -> ( ( F ` B ) < U \/ ( F ` B ) = U ) ) | 
						
							| 54 | 42 47 53 | mpjaodan |  |-  ( ph -> E. c e. ( A [,] B ) ( F ` c ) = U ) |