| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ivth.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ivth.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ivth.3 |  |-  ( ph -> U e. RR ) | 
						
							| 4 |  | ivth.4 |  |-  ( ph -> A < B ) | 
						
							| 5 |  | ivth.5 |  |-  ( ph -> ( A [,] B ) C_ D ) | 
						
							| 6 |  | ivth.7 |  |-  ( ph -> F e. ( D -cn-> CC ) ) | 
						
							| 7 |  | ivth.8 |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) | 
						
							| 8 |  | ivth.9 |  |-  ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) | 
						
							| 9 |  | ivth.10 |  |-  S = { x e. ( A [,] B ) | ( F ` x ) <_ U } | 
						
							| 10 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 11 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 12 | 1 2 4 | ltled |  |-  ( ph -> A <_ B ) | 
						
							| 13 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 14 | 10 11 12 13 | syl3anc |  |-  ( ph -> A e. ( A [,] B ) ) | 
						
							| 15 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 16 | 15 | eleq1d |  |-  ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) | 
						
							| 17 | 7 | ralrimiva |  |-  ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) | 
						
							| 18 | 16 17 14 | rspcdva |  |-  ( ph -> ( F ` A ) e. RR ) | 
						
							| 19 | 8 | simpld |  |-  ( ph -> ( F ` A ) < U ) | 
						
							| 20 | 18 3 19 | ltled |  |-  ( ph -> ( F ` A ) <_ U ) | 
						
							| 21 | 15 | breq1d |  |-  ( x = A -> ( ( F ` x ) <_ U <-> ( F ` A ) <_ U ) ) | 
						
							| 22 | 21 9 | elrab2 |  |-  ( A e. S <-> ( A e. ( A [,] B ) /\ ( F ` A ) <_ U ) ) | 
						
							| 23 | 14 20 22 | sylanbrc |  |-  ( ph -> A e. S ) | 
						
							| 24 | 9 | ssrab3 |  |-  S C_ ( A [,] B ) | 
						
							| 25 | 24 | sseli |  |-  ( z e. S -> z e. ( A [,] B ) ) | 
						
							| 26 |  | iccleub |  |-  ( ( A e. RR* /\ B e. RR* /\ z e. ( A [,] B ) ) -> z <_ B ) | 
						
							| 27 | 26 | 3expia |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( z e. ( A [,] B ) -> z <_ B ) ) | 
						
							| 28 | 10 11 27 | syl2anc |  |-  ( ph -> ( z e. ( A [,] B ) -> z <_ B ) ) | 
						
							| 29 | 25 28 | syl5 |  |-  ( ph -> ( z e. S -> z <_ B ) ) | 
						
							| 30 | 29 | ralrimiv |  |-  ( ph -> A. z e. S z <_ B ) | 
						
							| 31 | 23 30 | jca |  |-  ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |