Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
|- ( ph -> A e. RR ) |
2 |
|
ivth.2 |
|- ( ph -> B e. RR ) |
3 |
|
ivth.3 |
|- ( ph -> U e. RR ) |
4 |
|
ivth.4 |
|- ( ph -> A < B ) |
5 |
|
ivth.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
6 |
|
ivth.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
7 |
|
ivth.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
8 |
|
ivth.9 |
|- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
9 |
|
ivth.10 |
|- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
10 |
|
ivth.11 |
|- C = sup ( S , RR , < ) |
11 |
9
|
ssrab3 |
|- S C_ ( A [,] B ) |
12 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
13 |
1 2 12
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
14 |
11 13
|
sstrid |
|- ( ph -> S C_ RR ) |
15 |
1 2 3 4 5 6 7 8 9
|
ivthlem1 |
|- ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |
16 |
15
|
simpld |
|- ( ph -> A e. S ) |
17 |
16
|
ne0d |
|- ( ph -> S =/= (/) ) |
18 |
15
|
simprd |
|- ( ph -> A. z e. S z <_ B ) |
19 |
|
brralrspcev |
|- ( ( B e. RR /\ A. z e. S z <_ B ) -> E. x e. RR A. z e. S z <_ x ) |
20 |
2 18 19
|
syl2anc |
|- ( ph -> E. x e. RR A. z e. S z <_ x ) |
21 |
14 17 20
|
suprcld |
|- ( ph -> sup ( S , RR , < ) e. RR ) |
22 |
10 21
|
eqeltrid |
|- ( ph -> C e. RR ) |
23 |
8
|
simpld |
|- ( ph -> ( F ` A ) < U ) |
24 |
1 2 3 4 5 6 7 8 9 10
|
ivthlem2 |
|- ( ph -> -. ( F ` C ) < U ) |
25 |
6
|
adantr |
|- ( ( ph /\ U < ( F ` C ) ) -> F e. ( D -cn-> CC ) ) |
26 |
14 17 20 16
|
suprubd |
|- ( ph -> A <_ sup ( S , RR , < ) ) |
27 |
26 10
|
breqtrrdi |
|- ( ph -> A <_ C ) |
28 |
14 17 20
|
3jca |
|- ( ph -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
29 |
|
suprleub |
|- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ B e. RR ) -> ( sup ( S , RR , < ) <_ B <-> A. z e. S z <_ B ) ) |
30 |
28 2 29
|
syl2anc |
|- ( ph -> ( sup ( S , RR , < ) <_ B <-> A. z e. S z <_ B ) ) |
31 |
18 30
|
mpbird |
|- ( ph -> sup ( S , RR , < ) <_ B ) |
32 |
10 31
|
eqbrtrid |
|- ( ph -> C <_ B ) |
33 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
34 |
1 2 33
|
syl2anc |
|- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
35 |
22 27 32 34
|
mpbir3and |
|- ( ph -> C e. ( A [,] B ) ) |
36 |
5 35
|
sseldd |
|- ( ph -> C e. D ) |
37 |
36
|
adantr |
|- ( ( ph /\ U < ( F ` C ) ) -> C e. D ) |
38 |
|
fveq2 |
|- ( x = C -> ( F ` x ) = ( F ` C ) ) |
39 |
38
|
eleq1d |
|- ( x = C -> ( ( F ` x ) e. RR <-> ( F ` C ) e. RR ) ) |
40 |
7
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
41 |
39 40 35
|
rspcdva |
|- ( ph -> ( F ` C ) e. RR ) |
42 |
|
difrp |
|- ( ( U e. RR /\ ( F ` C ) e. RR ) -> ( U < ( F ` C ) <-> ( ( F ` C ) - U ) e. RR+ ) ) |
43 |
3 41 42
|
syl2anc |
|- ( ph -> ( U < ( F ` C ) <-> ( ( F ` C ) - U ) e. RR+ ) ) |
44 |
43
|
biimpa |
|- ( ( ph /\ U < ( F ` C ) ) -> ( ( F ` C ) - U ) e. RR+ ) |
45 |
|
cncfi |
|- ( ( F e. ( D -cn-> CC ) /\ C e. D /\ ( ( F ` C ) - U ) e. RR+ ) -> E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) |
46 |
25 37 44 45
|
syl3anc |
|- ( ( ph /\ U < ( F ` C ) ) -> E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) |
47 |
|
ssralv |
|- ( ( A [,] B ) C_ D -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) ) |
48 |
5 47
|
syl |
|- ( ph -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) ) |
50 |
22
|
ad2antrr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> C e. RR ) |
51 |
|
ltsubrp |
|- ( ( C e. RR /\ z e. RR+ ) -> ( C - z ) < C ) |
52 |
50 51
|
sylancom |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( C - z ) < C ) |
53 |
52 10
|
breqtrdi |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( C - z ) < sup ( S , RR , < ) ) |
54 |
28
|
ad2antrr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
55 |
|
rpre |
|- ( z e. RR+ -> z e. RR ) |
56 |
55
|
adantl |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> z e. RR ) |
57 |
50 56
|
resubcld |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( C - z ) e. RR ) |
58 |
|
suprlub |
|- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ ( C - z ) e. RR ) -> ( ( C - z ) < sup ( S , RR , < ) <-> E. y e. S ( C - z ) < y ) ) |
59 |
54 57 58
|
syl2anc |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( C - z ) < sup ( S , RR , < ) <-> E. y e. S ( C - z ) < y ) ) |
60 |
53 59
|
mpbid |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> E. y e. S ( C - z ) < y ) |
61 |
11
|
sseli |
|- ( y e. S -> y e. ( A [,] B ) ) |
62 |
61
|
ad2antrl |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y e. ( A [,] B ) ) |
63 |
|
simplll |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ph ) |
64 |
63 13
|
syl |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( A [,] B ) C_ RR ) |
65 |
64 62
|
sseldd |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y e. RR ) |
66 |
63 22
|
syl |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> C e. RR ) |
67 |
63 28
|
syl |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
68 |
|
simprl |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y e. S ) |
69 |
|
suprub |
|- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ y e. S ) -> y <_ sup ( S , RR , < ) ) |
70 |
67 68 69
|
syl2anc |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y <_ sup ( S , RR , < ) ) |
71 |
70 10
|
breqtrrdi |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y <_ C ) |
72 |
65 66 71
|
abssuble0d |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( abs ` ( y - C ) ) = ( C - y ) ) |
73 |
56
|
adantr |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> z e. RR ) |
74 |
|
simprr |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( C - z ) < y ) |
75 |
66 73 65 74
|
ltsub23d |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( C - y ) < z ) |
76 |
72 75
|
eqbrtrd |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( abs ` ( y - C ) ) < z ) |
77 |
62 76 68
|
jca32 |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( y e. ( A [,] B ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) |
78 |
77
|
ex |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( y e. S /\ ( C - z ) < y ) -> ( y e. ( A [,] B ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) ) |
79 |
78
|
reximdv2 |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( E. y e. S ( C - z ) < y -> E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) |
80 |
60 79
|
mpd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) |
81 |
|
r19.29 |
|- ( ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> E. y e. ( A [,] B ) ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) |
82 |
|
pm3.45 |
|- ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> ( ( ( abs ` ( y - C ) ) < z /\ y e. S ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) ) ) |
83 |
82
|
imp |
|- ( ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) ) |
84 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
85 |
84
|
eleq1d |
|- ( x = y -> ( ( F ` x ) e. RR <-> ( F ` y ) e. RR ) ) |
86 |
40
|
ad2antrr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
87 |
61
|
ad2antll |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> y e. ( A [,] B ) ) |
88 |
85 86 87
|
rspcdva |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` y ) e. RR ) |
89 |
41
|
ad2antrr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` C ) e. RR ) |
90 |
3
|
ad2antrr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> U e. RR ) |
91 |
89 90
|
resubcld |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( F ` C ) - U ) e. RR ) |
92 |
88 89 91
|
absdifltd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) <-> ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) /\ ( F ` y ) < ( ( F ` C ) + ( ( F ` C ) - U ) ) ) ) ) |
93 |
89
|
recnd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` C ) e. CC ) |
94 |
90
|
recnd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> U e. CC ) |
95 |
93 94
|
nncand |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( F ` C ) - ( ( F ` C ) - U ) ) = U ) |
96 |
95
|
breq1d |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) <-> U < ( F ` y ) ) ) |
97 |
84
|
breq1d |
|- ( x = y -> ( ( F ` x ) <_ U <-> ( F ` y ) <_ U ) ) |
98 |
97 9
|
elrab2 |
|- ( y e. S <-> ( y e. ( A [,] B ) /\ ( F ` y ) <_ U ) ) |
99 |
98
|
simprbi |
|- ( y e. S -> ( F ` y ) <_ U ) |
100 |
99
|
ad2antll |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` y ) <_ U ) |
101 |
88 90 100
|
lensymd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> -. U < ( F ` y ) ) |
102 |
101
|
pm2.21d |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( U < ( F ` y ) -> -. U < ( F ` C ) ) ) |
103 |
96 102
|
sylbid |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) -> -. U < ( F ` C ) ) ) |
104 |
103
|
adantrd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) /\ ( F ` y ) < ( ( F ` C ) + ( ( F ` C ) - U ) ) ) -> -. U < ( F ` C ) ) ) |
105 |
92 104
|
sylbid |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) -> -. U < ( F ` C ) ) ) |
106 |
105
|
expr |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( y e. S -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) -> -. U < ( F ` C ) ) ) ) |
107 |
106
|
impcomd |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) -> -. U < ( F ` C ) ) ) |
108 |
107
|
adantr |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) -> -. U < ( F ` C ) ) ) |
109 |
83 108
|
syl5 |
|- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> -. U < ( F ` C ) ) ) |
110 |
109
|
rexlimdva |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( E. y e. ( A [,] B ) ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> -. U < ( F ` C ) ) ) |
111 |
81 110
|
syl5 |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> -. U < ( F ` C ) ) ) |
112 |
80 111
|
mpan2d |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> -. U < ( F ` C ) ) ) |
113 |
49 112
|
syld |
|- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> -. U < ( F ` C ) ) ) |
114 |
113
|
rexlimdva |
|- ( ( ph /\ U < ( F ` C ) ) -> ( E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> -. U < ( F ` C ) ) ) |
115 |
46 114
|
mpd |
|- ( ( ph /\ U < ( F ` C ) ) -> -. U < ( F ` C ) ) |
116 |
115
|
pm2.01da |
|- ( ph -> -. U < ( F ` C ) ) |
117 |
41 3
|
lttri3d |
|- ( ph -> ( ( F ` C ) = U <-> ( -. ( F ` C ) < U /\ -. U < ( F ` C ) ) ) ) |
118 |
24 116 117
|
mpbir2and |
|- ( ph -> ( F ` C ) = U ) |
119 |
23 118
|
breqtrrd |
|- ( ph -> ( F ` A ) < ( F ` C ) ) |
120 |
41
|
ltnrd |
|- ( ph -> -. ( F ` C ) < ( F ` C ) ) |
121 |
|
fveq2 |
|- ( C = A -> ( F ` C ) = ( F ` A ) ) |
122 |
121
|
breq1d |
|- ( C = A -> ( ( F ` C ) < ( F ` C ) <-> ( F ` A ) < ( F ` C ) ) ) |
123 |
122
|
notbid |
|- ( C = A -> ( -. ( F ` C ) < ( F ` C ) <-> -. ( F ` A ) < ( F ` C ) ) ) |
124 |
120 123
|
syl5ibcom |
|- ( ph -> ( C = A -> -. ( F ` A ) < ( F ` C ) ) ) |
125 |
124
|
necon2ad |
|- ( ph -> ( ( F ` A ) < ( F ` C ) -> C =/= A ) ) |
126 |
125 27
|
jctild |
|- ( ph -> ( ( F ` A ) < ( F ` C ) -> ( A <_ C /\ C =/= A ) ) ) |
127 |
1 22
|
ltlend |
|- ( ph -> ( A < C <-> ( A <_ C /\ C =/= A ) ) ) |
128 |
126 127
|
sylibrd |
|- ( ph -> ( ( F ` A ) < ( F ` C ) -> A < C ) ) |
129 |
119 128
|
mpd |
|- ( ph -> A < C ) |
130 |
8
|
simprd |
|- ( ph -> U < ( F ` B ) ) |
131 |
118 130
|
eqbrtrd |
|- ( ph -> ( F ` C ) < ( F ` B ) ) |
132 |
|
fveq2 |
|- ( B = C -> ( F ` B ) = ( F ` C ) ) |
133 |
132
|
breq2d |
|- ( B = C -> ( ( F ` C ) < ( F ` B ) <-> ( F ` C ) < ( F ` C ) ) ) |
134 |
133
|
notbid |
|- ( B = C -> ( -. ( F ` C ) < ( F ` B ) <-> -. ( F ` C ) < ( F ` C ) ) ) |
135 |
120 134
|
syl5ibrcom |
|- ( ph -> ( B = C -> -. ( F ` C ) < ( F ` B ) ) ) |
136 |
135
|
necon2ad |
|- ( ph -> ( ( F ` C ) < ( F ` B ) -> B =/= C ) ) |
137 |
136 32
|
jctild |
|- ( ph -> ( ( F ` C ) < ( F ` B ) -> ( C <_ B /\ B =/= C ) ) ) |
138 |
22 2
|
ltlend |
|- ( ph -> ( C < B <-> ( C <_ B /\ B =/= C ) ) ) |
139 |
137 138
|
sylibrd |
|- ( ph -> ( ( F ` C ) < ( F ` B ) -> C < B ) ) |
140 |
131 139
|
mpd |
|- ( ph -> C < B ) |
141 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
142 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
143 |
|
elioo2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
144 |
141 142 143
|
syl2anc |
|- ( ph -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
145 |
22 129 140 144
|
mpbir3and |
|- ( ph -> C e. ( A (,) B ) ) |
146 |
145 118
|
jca |
|- ( ph -> ( C e. ( A (,) B ) /\ ( F ` C ) = U ) ) |