Metamath Proof Explorer


Theorem ixp0

Description: The infinite Cartesian product of a family B ( x ) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 . (Contributed by NM, 1-Oct-2006) (Proof shortened by Mario Carneiro, 22-Jun-2016)

Ref Expression
Assertion ixp0
|- ( E. x e. A B = (/) -> X_ x e. A B = (/) )

Proof

Step Hyp Ref Expression
1 nne
 |-  ( -. B =/= (/) <-> B = (/) )
2 1 rexbii
 |-  ( E. x e. A -. B =/= (/) <-> E. x e. A B = (/) )
3 rexnal
 |-  ( E. x e. A -. B =/= (/) <-> -. A. x e. A B =/= (/) )
4 2 3 bitr3i
 |-  ( E. x e. A B = (/) <-> -. A. x e. A B =/= (/) )
5 ixpn0
 |-  ( X_ x e. A B =/= (/) -> A. x e. A B =/= (/) )
6 5 necon1bi
 |-  ( -. A. x e. A B =/= (/) -> X_ x e. A B = (/) )
7 4 6 sylbi
 |-  ( E. x e. A B = (/) -> X_ x e. A B = (/) )