Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixp0x | |- X_ x e. (/) A = { (/) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfixp |  |-  X_ x e. (/) A = { f | ( f Fn (/) /\ A. x e. (/) ( f ` x ) e. A ) } | |
| 2 | velsn |  |-  ( f e. { (/) } <-> f = (/) ) | |
| 3 | fn0 | |- ( f Fn (/) <-> f = (/) ) | |
| 4 | ral0 | |- A. x e. (/) ( f ` x ) e. A | |
| 5 | 4 | biantru | |- ( f Fn (/) <-> ( f Fn (/) /\ A. x e. (/) ( f ` x ) e. A ) ) | 
| 6 | 2 3 5 | 3bitr2i |  |-  ( f e. { (/) } <-> ( f Fn (/) /\ A. x e. (/) ( f ` x ) e. A ) ) | 
| 7 | 6 | eqabi |  |-  { (/) } = { f | ( f Fn (/) /\ A. x e. (/) ( f ` x ) e. A ) } | 
| 8 | 1 7 | eqtr4i |  |-  X_ x e. (/) A = { (/) } |