Metamath Proof Explorer


Theorem ixpconst

Description: Infinite Cartesian product of a constant B . (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypotheses ixpconst.1
|- A e. _V
ixpconst.2
|- B e. _V
Assertion ixpconst
|- X_ x e. A B = ( B ^m A )

Proof

Step Hyp Ref Expression
1 ixpconst.1
 |-  A e. _V
2 ixpconst.2
 |-  B e. _V
3 ixpconstg
 |-  ( ( A e. _V /\ B e. _V ) -> X_ x e. A B = ( B ^m A ) )
4 1 2 3 mp2an
 |-  X_ x e. A B = ( B ^m A )