Metamath Proof Explorer


Theorem ixpeq1d

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq1d.1
|- ( ph -> A = B )
Assertion ixpeq1d
|- ( ph -> X_ x e. A C = X_ x e. B C )

Proof

Step Hyp Ref Expression
1 ixpeq1d.1
 |-  ( ph -> A = B )
2 ixpeq1
 |-  ( A = B -> X_ x e. A C = X_ x e. B C )
3 1 2 syl
 |-  ( ph -> X_ x e. A C = X_ x e. B C )