Metamath Proof Explorer


Theorem ixpeq2d

Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ixpeq2d.1
|- F/ x ph
ixpeq2d.2
|- ( ( ph /\ x e. A ) -> B = C )
Assertion ixpeq2d
|- ( ph -> X_ x e. A B = X_ x e. A C )

Proof

Step Hyp Ref Expression
1 ixpeq2d.1
 |-  F/ x ph
2 ixpeq2d.2
 |-  ( ( ph /\ x e. A ) -> B = C )
3 2 ex
 |-  ( ph -> ( x e. A -> B = C ) )
4 1 3 ralrimi
 |-  ( ph -> A. x e. A B = C )
5 ixpeq2
 |-  ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C )
6 4 5 syl
 |-  ( ph -> X_ x e. A B = X_ x e. A C )