Metamath Proof Explorer


Theorem ixpeq2dv

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dv.1
|- ( ph -> B = C )
Assertion ixpeq2dv
|- ( ph -> X_ x e. A B = X_ x e. A C )

Proof

Step Hyp Ref Expression
1 ixpeq2dv.1
 |-  ( ph -> B = C )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> B = C )
3 2 ixpeq2dva
 |-  ( ph -> X_ x e. A B = X_ x e. A C )