Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixpeq2dva.1 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| Assertion | ixpeq2dva | |- ( ph -> X_ x e. A B = X_ x e. A C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ixpeq2dva.1 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| 2 | 1 | ralrimiva | |- ( ph -> A. x e. A B = C ) | 
| 3 | ixpeq2 | |- ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C ) | |
| 4 | 2 3 | syl | |- ( ph -> X_ x e. A B = X_ x e. A C ) |