Metamath Proof Explorer


Theorem ixpint

Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion ixpint
|- ( B =/= (/) -> X_ x e. A |^| B = |^|_ y e. B X_ x e. A y )

Proof

Step Hyp Ref Expression
1 ixpeq2
 |-  ( A. x e. A |^| B = |^|_ y e. B y -> X_ x e. A |^| B = X_ x e. A |^|_ y e. B y )
2 intiin
 |-  |^| B = |^|_ y e. B y
3 2 a1i
 |-  ( x e. A -> |^| B = |^|_ y e. B y )
4 1 3 mprg
 |-  X_ x e. A |^| B = X_ x e. A |^|_ y e. B y
5 ixpiin
 |-  ( B =/= (/) -> X_ x e. A |^|_ y e. B y = |^|_ y e. B X_ x e. A y )
6 4 5 eqtrid
 |-  ( B =/= (/) -> X_ x e. A |^| B = |^|_ y e. B X_ x e. A y )