| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfixp |
|- X_ x e. { X } B = { f | ( f Fn { X } /\ A. x e. { X } ( f ` x ) e. B ) } |
| 2 |
|
ralsnsg |
|- ( X e. V -> ( A. x e. { X } ( f ` x ) e. B <-> [. X / x ]. ( f ` x ) e. B ) ) |
| 3 |
|
sbcel12 |
|- ( [. X / x ]. ( f ` x ) e. B <-> [_ X / x ]_ ( f ` x ) e. [_ X / x ]_ B ) |
| 4 |
|
csbfv2g |
|- ( X e. V -> [_ X / x ]_ ( f ` x ) = ( f ` [_ X / x ]_ x ) ) |
| 5 |
|
csbvarg |
|- ( X e. V -> [_ X / x ]_ x = X ) |
| 6 |
5
|
fveq2d |
|- ( X e. V -> ( f ` [_ X / x ]_ x ) = ( f ` X ) ) |
| 7 |
4 6
|
eqtrd |
|- ( X e. V -> [_ X / x ]_ ( f ` x ) = ( f ` X ) ) |
| 8 |
7
|
eleq1d |
|- ( X e. V -> ( [_ X / x ]_ ( f ` x ) e. [_ X / x ]_ B <-> ( f ` X ) e. [_ X / x ]_ B ) ) |
| 9 |
3 8
|
bitrid |
|- ( X e. V -> ( [. X / x ]. ( f ` x ) e. B <-> ( f ` X ) e. [_ X / x ]_ B ) ) |
| 10 |
2 9
|
bitrd |
|- ( X e. V -> ( A. x e. { X } ( f ` x ) e. B <-> ( f ` X ) e. [_ X / x ]_ B ) ) |
| 11 |
10
|
anbi2d |
|- ( X e. V -> ( ( f Fn { X } /\ A. x e. { X } ( f ` x ) e. B ) <-> ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) ) ) |
| 12 |
11
|
abbidv |
|- ( X e. V -> { f | ( f Fn { X } /\ A. x e. { X } ( f ` x ) e. B ) } = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) } ) |
| 13 |
1 12
|
eqtrid |
|- ( X e. V -> X_ x e. { X } B = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ B ) } ) |