Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxun.2 |
|- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
3 |
|
ixxun.3 |
|- ( ( B e. RR* /\ w e. RR* ) -> ( B T w <-> -. w S B ) ) |
4 |
|
elin |
|- ( w e. ( ( A O B ) i^i ( B P C ) ) <-> ( w e. ( A O B ) /\ w e. ( B P C ) ) ) |
5 |
1
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
7 |
6
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
8 |
7
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( A O B ) ) -> w S B ) |
9 |
8
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( w e. ( A O B ) /\ w e. ( B P C ) ) ) -> w S B ) |
10 |
2
|
elixx1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
11 |
10
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
12 |
11
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> ( w e. RR* /\ B T w /\ w U C ) ) |
13 |
12
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> B T w ) |
14 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> B e. RR* ) |
15 |
12
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> w e. RR* ) |
16 |
14 15 3
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> ( B T w <-> -. w S B ) ) |
17 |
13 16
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> -. w S B ) |
18 |
17
|
adantrl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( w e. ( A O B ) /\ w e. ( B P C ) ) ) -> -. w S B ) |
19 |
9 18
|
pm2.65da |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> -. ( w e. ( A O B ) /\ w e. ( B P C ) ) ) |
20 |
19
|
pm2.21d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w e. ( A O B ) /\ w e. ( B P C ) ) -> w e. (/) ) ) |
21 |
4 20
|
syl5bi |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( w e. ( ( A O B ) i^i ( B P C ) ) -> w e. (/) ) ) |
22 |
21
|
ssrdv |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A O B ) i^i ( B P C ) ) C_ (/) ) |
23 |
|
ss0 |
|- ( ( ( A O B ) i^i ( B P C ) ) C_ (/) -> ( ( A O B ) i^i ( B P C ) ) = (/) ) |
24 |
22 23
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A O B ) i^i ( B P C ) ) = (/) ) |