Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) | |
| Assertion | ixxex | |- O e. _V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ixx.1 |  |-  O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) | |
| 2 | xrex | |- RR* e. _V | |
| 3 | 2 2 | xpex | |- ( RR* X. RR* ) e. _V | 
| 4 | 2 | pwex | |- ~P RR* e. _V | 
| 5 | 3 4 | xpex | |- ( ( RR* X. RR* ) X. ~P RR* ) e. _V | 
| 6 | 1 | ixxf | |- O : ( RR* X. RR* ) --> ~P RR* | 
| 7 | fssxp | |- ( O : ( RR* X. RR* ) --> ~P RR* -> O C_ ( ( RR* X. RR* ) X. ~P RR* ) ) | |
| 8 | 6 7 | ax-mp | |- O C_ ( ( RR* X. RR* ) X. ~P RR* ) | 
| 9 | 5 8 | ssexi | |- O e. _V |