Metamath Proof Explorer


Theorem ixxf

Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypothesis ixx.1
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } )
Assertion ixxf
|- O : ( RR* X. RR* ) --> ~P RR*

Proof

Step Hyp Ref Expression
1 ixx.1
 |-  O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } )
2 xrex
 |-  RR* e. _V
3 ssrab2
 |-  { z e. RR* | ( x R z /\ z S y ) } C_ RR*
4 2 3 elpwi2
 |-  { z e. RR* | ( x R z /\ z S y ) } e. ~P RR*
5 4 rgen2w
 |-  A. x e. RR* A. y e. RR* { z e. RR* | ( x R z /\ z S y ) } e. ~P RR*
6 1 fmpo
 |-  ( A. x e. RR* A. y e. RR* { z e. RR* | ( x R z /\ z S y ) } e. ~P RR* <-> O : ( RR* X. RR* ) --> ~P RR* )
7 5 6 mpbi
 |-  O : ( RR* X. RR* ) --> ~P RR*