Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| Assertion | ixxf | |- O : ( RR* X. RR* ) --> ~P RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | xrex | |- RR* e. _V |
|
| 3 | ssrab2 | |- { z e. RR* | ( x R z /\ z S y ) } C_ RR* |
|
| 4 | 2 3 | elpwi2 | |- { z e. RR* | ( x R z /\ z S y ) } e. ~P RR* |
| 5 | 4 | rgen2w | |- A. x e. RR* A. y e. RR* { z e. RR* | ( x R z /\ z S y ) } e. ~P RR* |
| 6 | 1 | fmpo | |- ( A. x e. RR* A. y e. RR* { z e. RR* | ( x R z /\ z S y ) } e. ~P RR* <-> O : ( RR* X. RR* ) --> ~P RR* ) |
| 7 | 5 6 | mpbi | |- O : ( RR* X. RR* ) --> ~P RR* |