Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxub.2 |
|- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w S B ) ) |
3 |
|
ixxub.3 |
|- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w <_ B ) ) |
4 |
|
ixxub.4 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A R w ) ) |
5 |
|
ixxub.5 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A <_ w ) ) |
6 |
1
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
8 |
7
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
9 |
8
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w e. RR* ) |
10 |
9
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) -> w e. RR* ) ) |
11 |
10
|
ssrdv |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) C_ RR* ) |
12 |
|
infxrcl |
|- ( ( A O B ) C_ RR* -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
13 |
11 12
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
14 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A e. RR* ) |
15 |
|
simprr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w < inf ( ( A O B ) , RR* , < ) ) |
16 |
11
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( A O B ) C_ RR* ) |
17 |
|
qre |
|- ( w e. QQ -> w e. RR ) |
18 |
17
|
rexrd |
|- ( w e. QQ -> w e. RR* ) |
19 |
18
|
ad2antlr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w e. RR* ) |
20 |
|
simprl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> A < w ) |
21 |
14
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> A e. RR* ) |
22 |
21 19 4
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( A < w -> A R w ) ) |
23 |
20 22
|
mpd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> A R w ) |
24 |
13
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
25 |
|
simpll2 |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> B e. RR* ) |
26 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) =/= (/) ) |
27 |
|
n0 |
|- ( ( A O B ) =/= (/) <-> E. w w e. ( A O B ) ) |
28 |
26 27
|
sylib |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> E. w w e. ( A O B ) ) |
29 |
13
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
30 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> B e. RR* ) |
31 |
|
infxrlb |
|- ( ( ( A O B ) C_ RR* /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) <_ w ) |
32 |
11 31
|
sylan |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) <_ w ) |
33 |
8
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w S B ) |
34 |
9 30 3
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w S B -> w <_ B ) ) |
35 |
33 34
|
mpd |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w <_ B ) |
36 |
29 9 30 32 35
|
xrletrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) <_ B ) |
37 |
28 36
|
exlimddv |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) <_ B ) |
38 |
37
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> inf ( ( A O B ) , RR* , < ) <_ B ) |
39 |
19 24 25 15 38
|
xrltletrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w < B ) |
40 |
19 25 2
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( w < B -> w S B ) ) |
41 |
39 40
|
mpd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w S B ) |
42 |
7
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
43 |
19 23 41 42
|
mpbir3and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w e. ( A O B ) ) |
44 |
16 43 31
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> inf ( ( A O B ) , RR* , < ) <_ w ) |
45 |
24 19
|
xrlenltd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( inf ( ( A O B ) , RR* , < ) <_ w <-> -. w < inf ( ( A O B ) , RR* , < ) ) ) |
46 |
44 45
|
mpbid |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> -. w < inf ( ( A O B ) , RR* , < ) ) |
47 |
15 46
|
pm2.65da |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) -> -. ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) |
48 |
47
|
nrexdv |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) |
49 |
|
qbtwnxr |
|- ( ( A e. RR* /\ inf ( ( A O B ) , RR* , < ) e. RR* /\ A < inf ( ( A O B ) , RR* , < ) ) -> E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) |
50 |
49
|
3expia |
|- ( ( A e. RR* /\ inf ( ( A O B ) , RR* , < ) e. RR* ) -> ( A < inf ( ( A O B ) , RR* , < ) -> E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) ) |
51 |
14 13 50
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A < inf ( ( A O B ) , RR* , < ) -> E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) ) |
52 |
48 51
|
mtod |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. A < inf ( ( A O B ) , RR* , < ) ) |
53 |
13 14 52
|
xrnltled |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) <_ A ) |
54 |
8
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A R w ) |
55 |
14
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A e. RR* ) |
56 |
55 9 5
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( A R w -> A <_ w ) ) |
57 |
54 56
|
mpd |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A <_ w ) |
58 |
57
|
ralrimiva |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A. w e. ( A O B ) A <_ w ) |
59 |
|
infxrgelb |
|- ( ( ( A O B ) C_ RR* /\ A e. RR* ) -> ( A <_ inf ( ( A O B ) , RR* , < ) <-> A. w e. ( A O B ) A <_ w ) ) |
60 |
11 14 59
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A <_ inf ( ( A O B ) , RR* , < ) <-> A. w e. ( A O B ) A <_ w ) ) |
61 |
58 60
|
mpbird |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A <_ inf ( ( A O B ) , RR* , < ) ) |
62 |
13 14 53 61
|
xrletrid |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) = A ) |