Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxss12.2 |
|- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
3 |
|
ixxss12.3 |
|- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A W C /\ C T w ) -> A R w ) ) |
4 |
|
ixxss12.4 |
|- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w U D /\ D X B ) -> w S B ) ) |
5 |
2
|
elixx3g |
|- ( w e. ( C P D ) <-> ( ( C e. RR* /\ D e. RR* /\ w e. RR* ) /\ ( C T w /\ w U D ) ) ) |
6 |
5
|
simplbi |
|- ( w e. ( C P D ) -> ( C e. RR* /\ D e. RR* /\ w e. RR* ) ) |
7 |
6
|
adantl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( C e. RR* /\ D e. RR* /\ w e. RR* ) ) |
8 |
7
|
simp3d |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w e. RR* ) |
9 |
|
simplrl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> A W C ) |
10 |
5
|
simprbi |
|- ( w e. ( C P D ) -> ( C T w /\ w U D ) ) |
11 |
10
|
adantl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( C T w /\ w U D ) ) |
12 |
11
|
simpld |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> C T w ) |
13 |
|
simplll |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> A e. RR* ) |
14 |
7
|
simp1d |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> C e. RR* ) |
15 |
13 14 8 3
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( ( A W C /\ C T w ) -> A R w ) ) |
16 |
9 12 15
|
mp2and |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> A R w ) |
17 |
11
|
simprd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w U D ) |
18 |
|
simplrr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> D X B ) |
19 |
7
|
simp2d |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> D e. RR* ) |
20 |
|
simpllr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> B e. RR* ) |
21 |
8 19 20 4
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( ( w U D /\ D X B ) -> w S B ) ) |
22 |
17 18 21
|
mp2and |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w S B ) |
23 |
1
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
25 |
8 16 22 24
|
mpbir3and |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w e. ( A O B ) ) |
26 |
25
|
ex |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) -> ( w e. ( C P D ) -> w e. ( A O B ) ) ) |
27 |
26
|
ssrdv |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) -> ( C P D ) C_ ( A O B ) ) |