Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxss2.2 |
|- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z T y ) } ) |
3 |
|
ixxss2.3 |
|- ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w T B /\ B W C ) -> w S C ) ) |
4 |
2
|
elixx3g |
|- ( w e. ( A P B ) <-> ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) /\ ( A R w /\ w T B ) ) ) |
5 |
4
|
simplbi |
|- ( w e. ( A P B ) -> ( A e. RR* /\ B e. RR* /\ w e. RR* ) ) |
6 |
5
|
adantl |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> ( A e. RR* /\ B e. RR* /\ w e. RR* ) ) |
7 |
6
|
simp3d |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> w e. RR* ) |
8 |
4
|
simprbi |
|- ( w e. ( A P B ) -> ( A R w /\ w T B ) ) |
9 |
8
|
adantl |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> ( A R w /\ w T B ) ) |
10 |
9
|
simpld |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> A R w ) |
11 |
9
|
simprd |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> w T B ) |
12 |
|
simplr |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> B W C ) |
13 |
6
|
simp2d |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> B e. RR* ) |
14 |
|
simpll |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> C e. RR* ) |
15 |
7 13 14 3
|
syl3anc |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> ( ( w T B /\ B W C ) -> w S C ) ) |
16 |
11 12 15
|
mp2and |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> w S C ) |
17 |
6
|
simp1d |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> A e. RR* ) |
18 |
1
|
elixx1 |
|- ( ( A e. RR* /\ C e. RR* ) -> ( w e. ( A O C ) <-> ( w e. RR* /\ A R w /\ w S C ) ) ) |
19 |
17 14 18
|
syl2anc |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> ( w e. ( A O C ) <-> ( w e. RR* /\ A R w /\ w S C ) ) ) |
20 |
7 10 16 19
|
mpbir3and |
|- ( ( ( C e. RR* /\ B W C ) /\ w e. ( A P B ) ) -> w e. ( A O C ) ) |
21 |
20
|
ex |
|- ( ( C e. RR* /\ B W C ) -> ( w e. ( A P B ) -> w e. ( A O C ) ) ) |
22 |
21
|
ssrdv |
|- ( ( C e. RR* /\ B W C ) -> ( A P B ) C_ ( A O C ) ) |