Metamath Proof Explorer


Theorem ja

Description: Inference joining the antecedents of two premises. For partial converses, see jarri and jarli . (Contributed by NM, 24-Jan-1993) (Proof shortened by Mel L. O'Cat, 19-Feb-2008)

Ref Expression
Hypotheses ja.1
|- ( -. ph -> ch )
ja.2
|- ( ps -> ch )
Assertion ja
|- ( ( ph -> ps ) -> ch )

Proof

Step Hyp Ref Expression
1 ja.1
 |-  ( -. ph -> ch )
2 ja.2
 |-  ( ps -> ch )
3 2 imim2i
 |-  ( ( ph -> ps ) -> ( ph -> ch ) )
4 3 1 pm2.61d1
 |-  ( ( ph -> ps ) -> ch )