Metamath Proof Explorer


Theorem jaao

Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999)

Ref Expression
Hypotheses jaao.1
|- ( ph -> ( ps -> ch ) )
jaao.2
|- ( th -> ( ta -> ch ) )
Assertion jaao
|- ( ( ph /\ th ) -> ( ( ps \/ ta ) -> ch ) )

Proof

Step Hyp Ref Expression
1 jaao.1
 |-  ( ph -> ( ps -> ch ) )
2 jaao.2
 |-  ( th -> ( ta -> ch ) )
3 1 adantr
 |-  ( ( ph /\ th ) -> ( ps -> ch ) )
4 2 adantl
 |-  ( ( ph /\ th ) -> ( ta -> ch ) )
5 3 4 jaod
 |-  ( ( ph /\ th ) -> ( ( ps \/ ta ) -> ch ) )