Metamath Proof Explorer


Theorem jabtaib

Description: For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020)

Ref Expression
Hypothesis jabtaib.1
|- ( ph /\ ps )
Assertion jabtaib
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 jabtaib.1
 |-  ( ph /\ ps )
2 pm3.4
 |-  ( ( ph /\ ps ) -> ( ph -> ps ) )
3 1 2 ax-mp
 |-  ( ph -> ps )