Description: Deduction form of ja . (Contributed by Scott Fenton, 13-Dec-2010) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | jad.1 | |- ( ph -> ( -. ps -> th ) ) |
|
| jad.2 | |- ( ph -> ( ch -> th ) ) |
||
| Assertion | jad | |- ( ph -> ( ( ps -> ch ) -> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jad.1 | |- ( ph -> ( -. ps -> th ) ) |
|
| 2 | jad.2 | |- ( ph -> ( ch -> th ) ) |
|
| 3 | 1 | com12 | |- ( -. ps -> ( ph -> th ) ) |
| 4 | 2 | com12 | |- ( ch -> ( ph -> th ) ) |
| 5 | 3 4 | ja | |- ( ( ps -> ch ) -> ( ph -> th ) ) |
| 6 | 5 | com12 | |- ( ph -> ( ( ps -> ch ) -> th ) ) |