Metamath Proof Explorer


Theorem jao

Description: Disjunction of antecedents. Compare Theorem *3.44 of WhiteheadRussell p. 113. (Contributed by NM, 5-Apr-1994) (Proof shortened by Wolf Lammen, 4-Apr-2013)

Ref Expression
Assertion jao
|- ( ( ph -> ps ) -> ( ( ch -> ps ) -> ( ( ph \/ ch ) -> ps ) ) )

Proof

Step Hyp Ref Expression
1 pm3.44
 |-  ( ( ( ph -> ps ) /\ ( ch -> ps ) ) -> ( ( ph \/ ch ) -> ps ) )
2 1 ex
 |-  ( ( ph -> ps ) -> ( ( ch -> ps ) -> ( ( ph \/ ch ) -> ps ) ) )