Metamath Proof Explorer


Theorem jaoa

Description: Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008)

Ref Expression
Hypotheses jaao.1
|- ( ph -> ( ps -> ch ) )
jaao.2
|- ( th -> ( ta -> ch ) )
Assertion jaoa
|- ( ( ph \/ th ) -> ( ( ps /\ ta ) -> ch ) )

Proof

Step Hyp Ref Expression
1 jaao.1
 |-  ( ph -> ( ps -> ch ) )
2 jaao.2
 |-  ( th -> ( ta -> ch ) )
3 1 adantrd
 |-  ( ph -> ( ( ps /\ ta ) -> ch ) )
4 2 adantld
 |-  ( th -> ( ( ps /\ ta ) -> ch ) )
5 3 4 jaoi
 |-  ( ( ph \/ th ) -> ( ( ps /\ ta ) -> ch ) )