Metamath Proof Explorer


Theorem jaob

Description: Disjunction of antecedents. Compare Theorem *4.77 of WhiteheadRussell p. 121. (Contributed by NM, 30-May-1994) (Proof shortened by Wolf Lammen, 9-Dec-2012)

Ref Expression
Assertion jaob
|- ( ( ( ph \/ ch ) -> ps ) <-> ( ( ph -> ps ) /\ ( ch -> ps ) ) )

Proof

Step Hyp Ref Expression
1 pm2.67-2
 |-  ( ( ( ph \/ ch ) -> ps ) -> ( ph -> ps ) )
2 olc
 |-  ( ch -> ( ph \/ ch ) )
3 2 imim1i
 |-  ( ( ( ph \/ ch ) -> ps ) -> ( ch -> ps ) )
4 1 3 jca
 |-  ( ( ( ph \/ ch ) -> ps ) -> ( ( ph -> ps ) /\ ( ch -> ps ) ) )
5 pm3.44
 |-  ( ( ( ph -> ps ) /\ ( ch -> ps ) ) -> ( ( ph \/ ch ) -> ps ) )
6 4 5 impbii
 |-  ( ( ( ph \/ ch ) -> ps ) <-> ( ( ph -> ps ) /\ ( ch -> ps ) ) )