Description: Disjunction of antecedents. Compare Theorem *4.77 of WhiteheadRussell p. 121. (Contributed by NM, 30-May-1994) (Proof shortened by Wolf Lammen, 9-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | jaob | |- ( ( ( ph \/ ch ) -> ps ) <-> ( ( ph -> ps ) /\ ( ch -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.67-2 | |- ( ( ( ph \/ ch ) -> ps ) -> ( ph -> ps ) ) |
|
2 | olc | |- ( ch -> ( ph \/ ch ) ) |
|
3 | 2 | imim1i | |- ( ( ( ph \/ ch ) -> ps ) -> ( ch -> ps ) ) |
4 | 1 3 | jca | |- ( ( ( ph \/ ch ) -> ps ) -> ( ( ph -> ps ) /\ ( ch -> ps ) ) ) |
5 | pm3.44 | |- ( ( ( ph -> ps ) /\ ( ch -> ps ) ) -> ( ( ph \/ ch ) -> ps ) ) |
|
6 | 4 5 | impbii | |- ( ( ( ph \/ ch ) -> ps ) <-> ( ( ph -> ps ) /\ ( ch -> ps ) ) ) |