Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | jaod.1 | |- ( ph -> ( ps -> ch ) ) |
|
| jaod.2 | |- ( ph -> ( th -> ch ) ) |
||
| Assertion | jaod | |- ( ph -> ( ( ps \/ th ) -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | jaod.2 | |- ( ph -> ( th -> ch ) ) |
|
| 3 | 1 | com12 | |- ( ps -> ( ph -> ch ) ) |
| 4 | 2 | com12 | |- ( th -> ( ph -> ch ) ) |
| 5 | 3 4 | jaoi | |- ( ( ps \/ th ) -> ( ph -> ch ) ) |
| 6 | 5 | com12 | |- ( ph -> ( ( ps \/ th ) -> ch ) ) |