Metamath Proof Explorer


Theorem jaoi

Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994)

Ref Expression
Hypotheses jaoi.1
|- ( ph -> ps )
jaoi.2
|- ( ch -> ps )
Assertion jaoi
|- ( ( ph \/ ch ) -> ps )

Proof

Step Hyp Ref Expression
1 jaoi.1
 |-  ( ph -> ps )
2 jaoi.2
 |-  ( ch -> ps )
3 pm2.53
 |-  ( ( ph \/ ch ) -> ( -. ph -> ch ) )
4 3 2 syl6
 |-  ( ( ph \/ ch ) -> ( -. ph -> ps ) )
5 4 1 pm2.61d2
 |-  ( ( ph \/ ch ) -> ps )