Metamath Proof Explorer


Theorem jaoi2

Description: Inference removing a negated conjunct in a disjunction of an antecedent if this conjunct is part of the disjunction. (Contributed by Alexander van der Vekens, 3-Nov-2017) (Proof shortened by Wolf Lammen, 21-Sep-2018)

Ref Expression
Hypothesis jaoi2.1
|- ( ( ph \/ ( -. ph /\ ch ) ) -> ps )
Assertion jaoi2
|- ( ( ph \/ ch ) -> ps )

Proof

Step Hyp Ref Expression
1 jaoi2.1
 |-  ( ( ph \/ ( -. ph /\ ch ) ) -> ps )
2 pm5.63
 |-  ( ( ph \/ ch ) <-> ( ph \/ ( -. ph /\ ch ) ) )
3 2 1 sylbi
 |-  ( ( ph \/ ch ) -> ps )