Metamath Proof Explorer


Theorem jaoian

Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005)

Ref Expression
Hypotheses jaoian.1
|- ( ( ph /\ ps ) -> ch )
jaoian.2
|- ( ( th /\ ps ) -> ch )
Assertion jaoian
|- ( ( ( ph \/ th ) /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 jaoian.1
 |-  ( ( ph /\ ps ) -> ch )
2 jaoian.2
 |-  ( ( th /\ ps ) -> ch )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 2 ex
 |-  ( th -> ( ps -> ch ) )
5 3 4 jaoi
 |-  ( ( ph \/ th ) -> ( ps -> ch ) )
6 5 imp
 |-  ( ( ( ph \/ th ) /\ ps ) -> ch )