Metamath Proof Explorer


Theorem jc

Description: Deduction joining the consequents of two premises. A deduction associated with pm3.2im . (Contributed by NM, 28-Dec-1992)

Ref Expression
Hypotheses jc.1
|- ( ph -> ps )
jc.2
|- ( ph -> ch )
Assertion jc
|- ( ph -> -. ( ps -> -. ch ) )

Proof

Step Hyp Ref Expression
1 jc.1
 |-  ( ph -> ps )
2 jc.2
 |-  ( ph -> ch )
3 pm3.2im
 |-  ( ps -> ( ch -> -. ( ps -> -. ch ) ) )
4 1 2 3 sylc
 |-  ( ph -> -. ( ps -> -. ch ) )