Metamath Proof Explorer


Theorem jca2

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010)

Ref Expression
Hypotheses jca2.1
|- ( ph -> ( ps -> ch ) )
jca2.2
|- ( ps -> th )
Assertion jca2
|- ( ph -> ( ps -> ( ch /\ th ) ) )

Proof

Step Hyp Ref Expression
1 jca2.1
 |-  ( ph -> ( ps -> ch ) )
2 jca2.2
 |-  ( ps -> th )
3 2 a1i
 |-  ( ph -> ( ps -> th ) )
4 1 3 jcad
 |-  ( ph -> ( ps -> ( ch /\ th ) ) )