Metamath Proof Explorer


Theorem jca32

Description: Join three consequents. (Contributed by FL, 1-Aug-2009)

Ref Expression
Hypotheses jca31.1
|- ( ph -> ps )
jca31.2
|- ( ph -> ch )
jca31.3
|- ( ph -> th )
Assertion jca32
|- ( ph -> ( ps /\ ( ch /\ th ) ) )

Proof

Step Hyp Ref Expression
1 jca31.1
 |-  ( ph -> ps )
2 jca31.2
 |-  ( ph -> ch )
3 jca31.3
 |-  ( ph -> th )
4 2 3 jca
 |-  ( ph -> ( ch /\ th ) )
5 1 4 jca
 |-  ( ph -> ( ps /\ ( ch /\ th ) ) )